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ABSTRACT 

 

Forest quality plays a crucial role in sustaining the functions of forest 

ecosystems. This study aims to develop a valid and reliable model for 

assessing forest quality through six dimensions: forest productivity, forest 

structure, soil factors, climatic conditions, topography, and anthropogenic 

factors. Vegetation data were collected from 138 sample plots using a 

stratified purposive sampling method. Soil, topography, and climate data 

were obtained from the SoilGrids, DEMNAS, CHIRPS, and NASA 

POWER websites, respectively. Anthropogenic data were derived from 

Sentinel-2 imagery. The forest quality assessment model was developed 

using confirmatory factor analysis (CFA). Results showed that forest 

structure, forest productivity, soil, and anthropogenic factors are valid and 

reliable in assessing forest quality, with forest productivity as the primary 

determinant. However, topographic and climatic factors were not valid for 

assessing forest quality due to the low variation in topographic and climatic 

data within the study area. The goodness-of-fit model evaluation indicated 

a good fit based on criteria including the chi-square, RMSEA, GFI, SRMR, 

AGFI, TLI, CFI, NFI, and CMIN/DF. Based on the relative weights of each 

dimension and indicator and using linear additive equations, a 

mathematical equation for the forest quality index is derived, providing a 

practical framework for assessing forest quality at the landscape scale, 

particularly in heterogeneous tropical ecosystems.

 

1. Introduction 

The sustainability of forest functions depends not only on the quantity of existing forests but 

also greatly on the quality of the forest (FAO and UNEP 2020; Kull et al. 2024). In this context, 

forest quality refers to the optimal value of goods and services within the ecosystem (Jiang and 

Yang 2023; Yan et al. 2022; Zhang et al. 2022). According to Suhendang (2020), forest quality is 

a sequential element in maintaining the sustainability of forests’ ecological, economic, and social 

functions. Accurate information about forest quality is a crucial foundation for making informed 

decisions in forest management.  

Forest quality is defined as the condition of the forest and all its attributes that can provide 

optimal and sustainable ecological, economic, and social benefits (Dudley et al. 2012; FAO 2024). 

This definition demonstrates that forest quality is an abstract and multidimensional concept, 

encompassing structural, functional, and socio-ecological aspects; therefore, assessment cannot be 
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carried out directly but requires a measurable and integrated indicator approach (Han and Wan 

2021). Therefore, the assessment of forest quality must be carried out using indicators that can 

present the attributes of forest quality (Cao et al. 2023). 

Amundson and Jenny (1997) stated that forest quality is closely related to factors of the 

initial state of the ecosystem (such as climate, topography, parent material, and potential biota), 

external factors (human activities and management actions), and ecosystem age. In its 

development, various approaches have been used in forest quality assessment, such as Analytical 

Hierarchy Process (AHP) (Feng et al. 2016; Wang and Bao 2011), AHP in combination with 

cluster analysis (Wu et al. 2019), Exploratory Factor Analysis (EFA) and redundancy analysis (Li 

et al. 2020), as well as spatial econometric regression (Gu et al. 2021). The indicators used also 

varied, which included aspects of forest structure and productivity, ecosystem health, soil 

conditions, topography, and socio-economic factors. A recent study by Cao et al. (2023) and Tang 

et al. (2022) utilizes satellite imagery and machine learning algorithms, such as SVR, RF, 

CatBoost, and CNN, to map forest quality spatially. However, Guo et al. (2023) emphasized that 

there is no consensus on the indicators used to assess forest quality; the selection of indicators is 

generally adjusted to the research objectives, data availability, and characteristics of the ecosystem 

being studied. 

At the global level, many integrative forest quality assessment models based on ecosystem 

indicators have been developed by Guo et al. (2023). While studies on forest quality are still scarce 

in Indonesia, most research remains focused on the quantity of forests (Saleh et al. 2019). The 

reported forest quality studies still focus on forest stands or forest soil quality (Aji et al. 2021; 

Manan et al. 2019; Rahayu et al. 2024; Safe’i et al. 2022). Nationally, the Ministry of Environment 

and Forestry (KLHK 2018) developed a method in the 2017 Indonesian environmental quality 

index document for assessing the quality of large-scale forests using the enhanced vegetation index 

(EVI) value from MODIS images (KLHK 2018). Although effective on a large scale, this approach 

tends to be less accurate because it generalizes indicators without considering the detailed aspects 

of complex forest ecosystems. 

On the other hand, the complex and dynamic condition of Indonesia’s natural forest 

ecosystem, with its high biodiversity, adds to the challenges in assessing forest quality (Hartoyo 

et al. 2021; Yasminnajla et al. 2023). Forest quality assessments become ineffective if all indicators 

are considered, as not all indicators have the same level of significance (Han and Wan 2021). 

Additionally, adopting an external forest quality assessment model without adequate localization 

can reduce the accuracy and uncertainty of the assessment results (Guo et al. 2023). Therefore, 

developing a forest quality assessment model suitable for the conditions of forest ecosystems in 

Indonesia is crucial. Given Indonesia’s vast range of natural forests, a practical and affordable 

approach to assessing forest quality is needed, one that also achieves an adequate level of accuracy 

for application at the landscape scale (Han and Wan 2021). Prior studies quantitatively assessed 

data-driven decision-making to evaluate the implemented policy and site levels (Guo et al. 2023).  

Furthermore, accurate forest quality assessment enables the effective reduction of 

deforestation and global change (Chen et al. 2019; Li et al. 2022). Following the description above, 

Rawa Aopa Watumohai National Park (TNRAW) in Southeast Sulawesi Province is a nature 

conservation area located in the Wallacea Zone. TNRAW is characterized by lowland forest, 

savanna, mangrove, and freshwater swamp ecosystems (Ridha et al. 2021). In addition, this area 

is also home to a diverse range of flora and fauna, including endemic species of Sulawesi (Purnomo 

et al. 2021; Ridha et al. 2021). The diversity of ecosystems in this area encourages the development 
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of models used to effectively monitor and evaluate areas that are difficult to access due to strict 

policies. 

Based on the description above, confirmatory factor analysis (CFA) is a statistical approach 

used to validate and assess the developed models (Hair et al. 2019; Jöreskog et al. 2016). 

Furthermore, CFA was used to test the relationship between latent constructs, including the 

accuracy of the variables (Cid et al. 2022; Hickerson and Lee 2022). It also enabled the 

simplification of complex models, as well as enhanced measurement instruments, to remove 

irrelevant items. The process focused on using the goodness-of-fit model to assess the overall 

model fit (Dani et al. 2022; Gómez-García et al. 2020; Ismael et al. 2021; Schweizer et al. 2020). 

This research aims to develop a model of the natural forests quality using reliable and valid 

indicators. The proposed model efficiently and accurately assessed forest quality in several 

ecosystems. The results provided an effective approach capable of evaluating the natural forest 

qualities. Additionally, it supported sustainable forest management policies, providing a solid basis 

for decision-making in terms of conserving and using forest resources. 

 

2. Materials and Methods 

2.1. Study Area 

This research was conducted in the Rawa Aopa Watumohai National Park (TNRAW) area 

located in Southeast Sulawesi Province, from August 2022 to June 2023. Geographically, the 

research area is located at 121°44'- 122°44' E and 4°22'- 4°39' S (Fig. 1). This area encompasses 

various ecosystems, including lowland rainforest (approximately 64,413 ha), savanna 

(approximately 21,617 ha), and mangrove (approximately 6,811 ha). Based on the description 

above, each ecosystem is characterized by varying vegetation structure, regeneration dynamics, 

and topography (Ramsar 2011; Ridha et al. 2021). TNRAW also faces various land use pressures, 

including road access, agricultural expansion, settlements, and land clearing in the buffer zone 

(Indra et al. 2009; Purnomo et al. 2021). Preliminary studies reported that various ecological and 

anthropogenic pressures led to the selection of TNRAW as an ideal location for assessing forest 

quality. The data acquired were processed and analyzed in the Remote Sensing and Geographic 

Information Systems Laboratory, Faculty of Forestry and Environment, IPB University. The litter 

and undergrowth samples collected in the field were analyzed at the Laboratory of the Department 

of Forestry, Faculty of Forestry and Environmental Sciences, Halu Oleo University. 

 

2.2. Materials and Tools 

The materials used in this study include primary data from field measurements and 

secondary data obtained from various valid sources. Primary data includes latent variables of forest 

productivity and forest structure, while secondary data includes soil fertility, topographic 

conditions, climatic conditions, and community activities. The tools used in this study include field 

survey equipment and data analysis equipment.  

Equipment for field surveys consists of a working map, GPS (global positioning system), 

compass, 50 m plastic rope, diameter tape (phi-band), 1.3 m wooden stick, 50 m measuring tape, 

haga hypsometer, Suunto clinometer, machete, pruning shears, (0.5 m × 0.5 m) frame, digital scale 

capacity 5–10 kg, fish eye camera, ring soil sampler, soil drill, ruler, small/medium plastic bags, 

large size sacks, tally-sheets and stationery, and digital cameras. The equipment used for data 
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processing includes a set of computers supported by several data processing and analysis software, 

namely Microsoft Excel 365, IBM SPSS Statistic, IBM AMOS 26, ArcGis 10.8.2, SAGA GIS 

8.1.1, Sentinel Application Platform (SNAP), Sen2Cor_v2.10, Google Earth Engine (GEE), 

Image-J and Hemispherical 2.0. 

 
Fig. 1. Research location. 

 

2.3. Sampling Methods 

Vegetation data were collected using the stratified purposive sampling method. Stratification 

was carried out based on the overlay of five main spatial variables: the area management zone, the 

Normalized Difference Vegetation Index (NDVI) of the Sentinel imagery, site elevation, soil type, 

and climatic conditions, resulting in 46 unique classes of land units (strata). The combination of 

the five variables was chosen because of their relevance in representing ecological and biophysical 

variations at the landscape level. Each stratum is considered to have different ecological 

characteristics, but it is not assigned a special statistical weight. To ensure representativeness, three 

sample plots of 1 ha were purposively selected from each stratum, considering the 

representativeness of ecological conditions, accessibility, and ease of location accessibility. Thus, 

the total number of sample plots used in this study is 138.  

Although the selection of sample points within each stratum is purposive, the stratification 

process was based on five main spatial variables, which allows a systematic and representative 

ecological distribution at the landscape level. This sampling design combined field ecological 

considerations with a spatial stratification framework designed to ensure the coverage of 

biophysical variation in a structured manner, even though it does not follow conventional statistical 

probabilities. Furthermore, in each sample plot, five observation subplots were systematically 

arranged (four in the corners and one in the middle), each measuring 0.04 ha, which were used to 

collect vegetation data based on growth phases, namely trees, poles, stakes, and seedlings. The 

averages of the five subplots were used to represent vegetation characteristics at each sample point. 

A subplot measuring 0.04 ha (20 m × 20 m) has proven to be reasonably representative in the study 

of vegetation structure and composition in tropical forests (Ekasari et al. 2024; Hernández-

Stefanoni et al. 2018). The nested design on a 0.04 ha plot enables the cross-observation of all 
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growth phases and a consistent spatial vegetation structure (Lin et al. 2020). In addition, the 

placement of 5 subplots, each 0.04 ha or 0.2 ha in size, per 1 ha plot provides a balance between 

the efficiency of fieldwork and the reliability of data in the context of heterogeneous landscapes 

(Grussu et al. 2016). The layout design of the subplots is shown in Fig. 2. 

 

Fig. 2. Cluster (a) and observation plot (b). 

 

Soil, topography, and climate data, respectively, were downloaded from 

https://soilgrids.org/, https://tanahair.indonesia.go.id, https://www.chc.ucsb.edu/data/chirps, and 

https://power.larc.nasa.gov/data-access-viewer/. Meanwhile, the anthropogenic data were derived 

from Sentinel-2 imagery. The NDVI Sentinel classification refers to the United States Geological 

Survey (USGS) global classification (Piragnolo et al. 2021). The data obtained was then processed 

using SNAP, SAGA GIS, and ArcGIS software. 

 

2.4. Data Calculation 

The results of field measurements were processed to obtain tree density data, measured as 

the number of individuals per unit area, and the total area of the base area (LBD), which is the 

total cross-sectional area of chest-high tree trunks (dbh) per plot (Li et al. 2023; Sajad et al. 2021). 

The height of the tree was measured with a hypsometer. According to Septiawan et al. (2017), 

certain criteria are used to classify the high stratification of canopy. Canopy cover percentage data 

were obtained by processing images produced from the fisheye camera (Bhatta et al. 2021). The 

volume of trees was determined as the total volume of trees in a 1 ha plot (m3/ha). Following the 

description above, biomass was calculated by summing the aboveground biomass (AGB), litter, 

and shrub biomass (BKT), measured in tons per hectare (Kounnama and Andreou 2022). The AGB 

was calculated for a specific type and global model. According to Chave (2014), AGB is equivalent 

to 0.0673 (ρd²H)^0.976, where D, H, and ρ describe the diameter (cm), height (m), and density 

(cm-3) of trees, respectively (Tiryana et al. 2016). The Chave model is used for species with 

unverified similarities, given the heterogeneous natural forest from the study site. It also functions 

as a basis for the development of regional models of various tropical forests, especially in 

Southeast Asia (Loh et al. 2020; Yuen et al. 2016). To increase future accuracy, it is necessary to 

consider local calibration. The biomass calculation of litter and undergrowth biomass was 

performed using a general formula, which involves dividing the dry weight of the sample by its 

https://soilgrids.org/
https://tanahair.indonesia.go.id/
https://www.chc.ucsb.edu/data/chirps
https://power.larc.nasa.gov/data-access-viewer/
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wet weight and then multiplying the result by the total wet weight (Tiryana et al. 2016). Data from 

various indicators used are presented in different units, so it is necessary to standardize the data 

using the rescaling method. For indicators without a scaling reference, data were rescaled using 

the rescaling score method (Kandanaarachchi et al. 2020; Shantal et al. 2023). The score scale 

ranges from 1 to 5, following a differential semantic scale: low (1), somewhat low (2), medium 

(3), suitable (4), and very good (5). The scoring process used Equation 1: 

Score =[ 
(Xi – NEmin) 

× (NRmax-NRmin) ] + NRmin (1) 
(NEmax – NEmin) 

where Xi is the i variable calculation value, NEmin is the minimum value of the calculation of the 

i variable, NEmax is the maximum value of the calculation of the i variable, NRmin is the minimum 

value of the rescaling score, and NRmax is the maximum value of the rescaling score. 

 

2.5. Data Analysis 

The development of a forest quality assessment model in this study employs second-order 

confirmatory factor analysis (CFA), which is analyzed using AMOS 26 software. The stages of 

modeling and data analysis in this study are as follows: 

1. Theory-based model development: Models are developed based on theoretically established 

causality relationships.  

2. Model specification: Constructing a path diagram that includes the selection of latent variables 

and indicators and then defining the relationship between them. 

3. Evaluation of measurement model assumptions: 

a. Sample size: The minimum sample size is 100–200 samples (Hoque et al. 2018; Kyriazos 

2018) 

b. Multivariate normality: The CR value in the AMOS output is used to interpret significant 

deviations from the normal distribution, with significance limits of ± 2.58 for the 1% rate 

and ± 1.96 for the 5% rate. 

c. Outliers: Outliers are observations with extreme values that appear significantly different 

from other values. Multivariate normals indicate the absence of systemic extreme outliers in 

the combined distribution of variables, thereby minimizing interference from multivariate 

outliers in CFA parameter estimation (Brown 2015; Hair et al. 2019). Since the model has 

met the normality assumption for multivariate data, the individual variable outlier test is no 

longer performed separately (Ghorbani 2019).  

4. Model identification: Models can be identified into three types based on degrees of freedom 

(df), namely unidentified (df < 0), just-identified (df = 0), and over-identified (df > 0) (Hair et 

al. 2019). In CFA modeling, the model is expected to be over-identified, allowing the analysis 

to be carried out with more data than the estimated parameters.  

5. Parameter estimation:  

a. Offending estimate: Checking for the presence or absence of offending estimate, such as 

deficient loading factor, loading factor more than one or negative (Heywood cases), and 

negative or non-significant error (Hair et al. 2019; Ozkok et al. 2019). 

b. Validity and reliability test: the validity test is carried out through several steps: (1) Loading 

factor ≥ 0.5 (Hair et al. 2019) or loading factor ≥ 0.4 in the context of model development 

(Hair et al. 2022; Prudon 2015); (2) Z test or CR ≥ 1.96 at a significance level of 5%; (3) 

The convergent validity test with an AVE (average variant extracted) value of ≥ 0.5 or AVE 
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> 0.45 is considered adequate if the CR (composite reliability) ≥ 0.70 (Fornell and Larcker 

1981; Na-Nan and Saribut 2020). The reliability test was conducted with a construct 

reliability (CR) of ≥ 0.7, which is considered very good, and a CR between 0.6 and 0.7 is 

still acceptable (Baharum et al. 2023; Hair et al. 2019). The calculation of the AVE and CR 

values is carried out using the following Equations 2 and 3: 

AVE= 
∑𝜆𝑖

2 
(2) 

∑𝜆𝑖
2 + ∑𝜃𝑖 

CR= 
∑𝜆𝑖

2 
(3) 

(∑𝜆𝑖
2 )2+ ∑𝜃𝑖 

6. The indicator of λi is the loading factor, and θi is the error variance. Evaluate fit models: The 

goodness-of-fit index (GOFI) measurement was conducted using three groups of fit indices: 

absolute fit index, incremental fit index, and parsimony fit index (Hair et al. 2019). According 

to Peugh et al. (2023), the absolute fit index included the chi-square test, goodness of fit index 

(GFI), root mean square error of approximation (RMSEA), and standardized root mean square 

residual (SRMR). Meanwhile, other fit index used an adjusted goodness-of-fit index (AGFI), 

comparative fit index (CFI), Tucker-Lewis index (TLI), and normed fit index (NFI) (Alizadeh-

Siuki et al. 2020; Lim et al. 2023). The parsimony fit index was commonly adopted as 

CMIN/DF, or chi-square per degree of freedom (Hair et al. 2019). 

7. Improved model: When the tested CFA model does not match the data, the modification process 

involves removing items with low loading factors or high residual correlations (Hagum and 

Shalfawi 2020) and modifying the index to differentiate the inherent error indicators’ 

correlation (Jeon et al. 2019). The modification process relied on solid theoretical justification 

(Fung et al. 2020; Milot-Lapointe et al. 2020) 

8. Development of mathematical equations: Forest quality index measurements were conducted 

by adopting linear additive combination equations. This approach provided a better solution, 

resulting in the avoidance of complex calculations (Shyaman et al. 2024). Additionally, the 

forest quality index equation was formulated through the summation of each dimension 

responsible for assessing forest quality after it had been weighed (Brown 2015) (Equation 4):  

FQI = ∑ 𝑊𝑖. 𝑋𝑖 (4) 

where FQI, Wi and Xi denote the forest quality index, weight, and standardized value, 

respectively. 

The weight of each factor or dimension is the proportion of the ith factor loading percentage 

to the total factor loading percentage (λ) of all factors, calculated using Equation 5: 

W𝑖 =  
𝑏𝑖

∑ 𝑏𝑖𝑛
𝑖=1

 (5) 

where Wi is the weight of the i-factor, and bi is the percent loading of the i-factor. 

 

3. Results and Discussion  

3.1. Theoretical Model Development 

The forest quality measurement model developed in this research has been analyzed using 

second-order confirmatory factor analysis (CFA) with the AMOS 26 software. Second-order CFA 

is a part of CFA analysis for the validity test of constructs involving hierarchical relationships of 
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two-level factors: first-order factors and second-order factors (Hair et al. 2019). The exploratory 

factor analysis (EFA) research was not conducted, as the construct structure and indicators in the 

model were determined deductively based on the existing conceptual framework. The model, 

referred to as the state ecological factor model (Amundson and Jenny 1997), was supported by 

other empirical literature that explains the indicators relevant to each factor. Therefore, the use of 

CFA in this study can be directly employed to test the conceptual relationships that have been 

previously formulated, following the confirmatory approach that underlies the CFA method. 

The second factor in this study was evaluated by six dimensions of the first factor, which are 

forest productivity, forest structure, soil fertility, climatic conditions, topographic conditions, and 

anthropogenic activity (Amundson and Jenny 1997). Each factor is measured by several indicators, 

making the forest quality construct multidimensional. The indicators used to calculate the factors 

in the first order are described as follows: (1) Forest productivity (PH) is measured by the above 

ground biomass (AGB) (PH1), tree volume (PH2), and tree base area (PH3) (Kalwar et al. 2021; 

Tiryana 2016); (2) Forest structure (SH) includes indicators of stand density (SH1), average tree 

height (SH2), canopy stratification (SH3) and, canopy cover percentage (SH4) (Felipe-Lucia et al. 

2018; Gough et al. 2019); (3) Soil factor (TH) was measured through organic C (TH1), KTK 

(TH2), bulk density (TH3), soil texture (TH4), and soil pH (TH5) (Weil and Brady 2016); (4) 

Topography (TO) involves elevation (TO1), slope (TO2), slope position (TO3), and topographic 

wetness index (TWI) (TO4) (Jucker et al. 2018); (5) Climatic conditions denoted by IK were 

determined by rainfall (IK1), humidity (IK2), and wind speed (IK3) (Ferrara et al. 2017); (6) 

Furthermore, the anthropogenic aspect (AN) was evaluated through road accessibility (AN1), 

settlement (AN2), and forest area utilization (AN3) (Kumar et al. 2014; Suni et al. 2023). 

The six dimensions were selected based on strong ecological relevance to the quality of 

forests and ecosystem services. In this context, the influence of soil on vegetation growth is a result 

of both nutrient availability and physical properties (Weil and Brady 2016), with moisture 

distribution and water flow patterns influenced by topography (Jucker et al. 2018). Preliminary 

studies have reported that cycles and natural disturbances, such as strong winds and droughts, are 

influenced by climate change (Ferrara et al. 2017). Forest structure reflects the vertical diversity 

and density of vegetation, which is crucial for biodiversity (Feng et al. 2020). However, forest 

productivity is closely linked to carbon storage capacity and related products (Chave et al. 2014; 

Zhu et al. 2023). Anthropogenic pressures, such as road access and land use, are primary indicators 

of disturbances to ecosystem stability (Kumar et al. 2014; Suni et al. 2023). These dimensions 

represent biotic, abiotic, and social aspects that are interrelated in influencing the sustainability of 

forest function and quality.  

 

3.2. Model Specifications 

The forest quality measurement model used in this study accurately reflects the actual forest 

conditions. A reflective model is a measurement model in which indicators manifest or reflect 

latent variables (Rogers and Barboza 2024). In this model, changes in latent variables result in 

changes in related indicators (Henseler et al. 2024). A visualization of the model’s specifications, 

developed to measure forest quality, is shown in Fig. 3.  
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Fig. 3. Specification of forest quality measurement model. 

 

3.3. Assumption Evaluation 

The results of the evaluation of the assumptions used in the CFA are presented in Table 1. 

The table shows that the data used in this study met the requirements for sample size assumptions, 

was normally distributed multivariate, and was free of outliers. Thus, the analysis can be 

continued. 

 

Table 1. Summary of the evaluation of assumptions used in CFA 

Assumption Result Information 

Sample size 125 samples (13 of the 138 initial data were dropped gradually 

to achieve normal multivariate) (Hoque et al. 2018; Kyriazos 

2018)  

Fulfilled 

Multivariate 

normality 

cr = -0.0.31 < -1.96; cr.kuortosis = -0.181 < -1.96 (Akram et 

al. 2019; Byrne 2011)  

Fulfilled 

Isolated There are data with a Mahalanobis distance of 36.057, but 

this distance is still tolerable because the assumption of 

multivariate normality is fulfilled (Khan et al. 2021)  

Fulfilled 

 

3.4. Model Identification 

The model identification results, performed using AMOS software, demonstrate that the 

aggregate number of distinct sample moments, encompassing both variances and covariances 

among the observed variables, totals 253. In contrast, the model requires the estimation of 50 

distinct parameters, including factor loadings, variances, covariances, and potential error terms 
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associated with the variables in the model. Consequently, this model’s degree of freedom (df) is 

computed by deducting the number of parameters required for estimation from the total number 

of distinct sample (Hoque et al. 2018) moments, resulting in a degree of freedom of 203 (253–50). 

In this instance, a positive degree of freedom indicates that the model is over-identified. Such over-

identification is pivotal, as it suggests that there is ample data to provide unique solutions for the 

model's parameters and to further test the model’s fit. Thus, this outcome corroborates the 

suitability of continuing with additional analyses to refine the model and evaluate its predictive 

accuracy and theoretical congruence. 

 

3.5. Parameter Estimation 

Parameter estimation of the model was carried out through several respecifications to 

overcome inappropriate estimates and ensure the model’s validity. The parameter estimation 

results are then visualized as a path diagram shown in Fig. 4-6.  

 

Fig. 4. The first CFA model. 

 

The result of the parameter estimation shown in the model in Fig. 4 indicates that the model 

has offending estimates, where IK2 exhibits a Heywood case (λ > 1), and the indicators TH4 (-

0.22) and TH5 (-0.20) have a low loading factor. According to Hair et al. (2019), removing 

indicators with low loading factors or Heywood cases is recommended if they cause model 

instability. Fig. 5 shows the better model after the indicator is removed. However, at the dimension 

level, topography (TOP) and climate (IK) cannot correctly measure the quality of forests. The 

topographic dimension has a deficient loading factor (0.004), and the Climate dimension shows a 

negative loading factor. The low loading factor in the topographic dimension is likely due to the 

homogeneity of the topographic conditions of mangrove and savanna ecosystems (Habibullah et 

al. 2023). Meanwhile, the climate factors are suspected to be caused by climate variations that are 

not visible due to the relatively narrow research location (Hu and Han 2022; Vandemeulebroucke 

et al. 2023). Low-scale data sources also contribute to the homogeneity of climate and topographic 
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data in the study location (Pogson and Smith 2015). Linhartová et al. (2021) stated that factors 

with low variation can reduce the significance of their contribution to the overall model. Fig. 6 

illustrates the removal of these two dimensions from the model to improve its fit (Chew et al. 

2019). Furthermore, the validity and reliability testing of the model are presented in Table 2. 

 
Fig. 5. The second CFA model. 

 

 
Fig. 6. The third CFA model. 

 

Table 2 shows that all indicators are significant and valid. The loading factor significance 

level proved this, and Average Variance Extracted (AVE) values were greater than 5.0. However, 

some were slightly lower than 0.5, such as the TH and AN dimensions, requiring improvement. 

The Composite Reliability (CR) analysis results indicate that the reliability or internal consistency 

of the measurement model meets the good criteria, with a CR value of ≥ 0.70. 
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Table 2. Summary of parameter estimation results and calculation of CR and AVE 
  

 Estimate λi S.E. C.R. P Sig λi
2  1 - λi

2 CR AVE 

SH <-- KH 1 0.829       sig 0.687 0.313 

0.82 0.55 
PH <-- KH 2.141 0.974 0.377 5.674 *** sig 0.949 0.051 

TH <-- KH 0.252 0,505 0.082 3.063 0.002 sig 0.255 0.745 

AN <-- KH 1.23 0.559 0.292 4.212 *** sig 0.312 0.688 

SH1 <-- SH 1 0.606       sig 0.367 0.633 

0.88 0.66 
SH2 <-- SH 1.235 0.868 0.167 7.412 *** sig 0.753 0.247 

SH3 <-- SH 1.617 0.911 0.212 7.61 *** sig 0.830 0.170 

SH4 <-- SH 1.574 0.825 0.219 7.178 *** sig 0.681 0.319 

PH1 <-- PH 1 0.895       sig 0.801 0.199 

0.91 0.78 PH2 <-- PH 0.696 0.905 0.047 14.715 *** sig 0.819 0.181 

PH3 <-- PH 0.774 0.843 0.06 12.843 *** sig 0.711 0.289 

TH1 <-- TH 1 0.462       sig 0.213 0.787 

0.70 0.47 TH2 <-- TH 1.028 0.504 0.244 4.215 *** sig 0.254 0.746 

TH3 <-- TH 4.429 0.973 1.094 4.047 *** sig 0.947 0.053 

AN1 <-- AN 1 0.763       sig 0.582 0.418 

0.73 0.47 AN2 <-- AN 0.468 0.551 0.092 5.077 *** sig 0.304 0.696 

AN3 <-- AN 1.095 0.729 0.185 5.928 *** sig 0.531 0.469 

 

3.6. Model Fit Evaluation 

A summary of the model fit test in Table 3 shows that the model does not fit the data. Some 

major indices, such as the RMSEA of 0.138 and the SRMR of 0.848, were above the recommended 

tolerance limits, indicating model inconsistency with the empirical data structure. In addition, 

some incremental indices, such as CFI (0.805) and TLI (0.811), show only a marginal match, and 

the χ²/df value of 3.346 also indicates room for improvement. This implies that, although the model 

is constructed based on a strong theoretical framework, in practice, it does not yet fully capture the 

complexity of the data. Therefore, improvement steps are necessary to enhance model 

compatibility. Some potential causes for low model fit include: (1) A complex and hierarchical 

model structure consisting of a latent second-level construct and four first-level constructs, as well 

as 13 observational indicators, which increases the likelihood of the emergence of 

unaccommodated residual correlations (Lewis 2017; Ondé and Alvarado 2018); (2) A high level 

of ecological heterogeneity in the study area, with 46 unique land units based on a combination of 

biogeophysical and socio-ecological variables. A moderate sample size has the potential to affect 

the stability of the estimate and lead to an increase in RMSEA (Kyriazos 2018; Lüdtke et al. 2021). 

 

3.7. Model Improvement 

The model improvement actions carried out include (1) the gradual deletion of items with 

high residual correlation, namely PH3(e7), SH4(e4), and SH2(e2), as well as the deletion of TH2 

(e9) to avoid the Heywood case on the TH3 indicator. (2) The index modification was carried out 

based on the suggestion from AMOS by covariating the error of the e1 (density) and e5 (biomass) 

indicators. Improving the model by removing indicators is recognized as having the potential to 

cause overfitting, where the model becomes too specialized for the observed data and cannot be 

generalized to other datasets. To avoid this, cross-validation with external data that is not used to 

train the model is one approach that can be applied. However, in this study, the validation process 

could not be carried out due to the limitations of the data sample size (n = 138). This 

methodological limitation in this study is recommended for further testing in follow-up research. 
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Table 3. Model fit test results 

Goodness of Fit Index Cut-off Value Model Results Information 

χ2 (Chi-square) 90.53 204 Not fit 

Probability ≥ 0.05 0.000 Not fit 

RMSEA ≥ 0.08 0.138 Not fit 

GFI ≤ 0.90 0.807 Marginal fit 

SRMR ≤ 0.80 0.848 Not fit 

AGFI ≥ 0.90 0.711 Not fit 

TLI ≥ 0.90 0.811 Marginal fit 

CFI ≥ 0.90 0.805 Marginal fit 

NFI ≥ 0.90 0.852 Marginal fit 

CMIN/DF < 2 3.346 Not fit 

 

However, to reduce the risk of overfitting, the elimination of indicators in this study was 

carried out gradually, not solely based on residual correlation values but also considering other 

aspects such as low loading factors and potential Heywood case symptoms, with the support of 

theoretical justification. Heywood cases occur when the estimation results yield statistically 

implausible values, such as an unfavorable error variance or a loading factor exceeding 1, typically 

due to multicollinearity, overlapping indicators, or a limited sample size.  

The TH2 (KTK) indicator was removed because it exhibited symptoms similar to those of 

the Heywood case and contained a substance that overlapped with TH3 (bulk density), which 

adequately represents the dimensions of soil fertility (Duan et al. 2019; Endriani and Listyarini 

2023). The SH2 (average tree height), SH4 (canopy closure percentage), and PH3 (tree base 

area/basal area) indicators were removed because their loading factor values were low compared 

to those of other indicators on the same dimension. This can be due to the indicator not consistently 

representing the contrast or dimensions it measures, or due to high measurement errors (Hair et al. 

2019). Regarding SH1 (vegetation density), although the loading factor is lower than that of SH2 

and SH4, it significantly improves the fit index when the index is modified by covarying the error 

with PH1 (Biomass). This index modification is only carried out on indicators that conceptually 

have a close ecological relationship. Where tree density is a direct determinant of biomass 

accumulation (Liu et al. 2020; Wegiel and Polowy 2020), and both were measured simultaneously 

in the field, so the possibility of sharing the same source of measurement error is very likely (Hair 

et al. 2019). Fig. 7 presents the model visualization after improvement. 

 

Fig. 7. The fourth CFA model. 
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Table 4 shows that all the indicators in the 4th model are significant and valid in explaining 

the construct they measure, as indicated by the loading factor and the significance level. Although 

TH1 has a loading factor of 0.48, this indicator is maintained in the model development context 

(Hair et al. 2022; Mistiani et al. 2022; Prudon 2015). The AVE value also indicates that the model 

has good convergent validity, with an AVE of ≥ 5.0, except for AN, which has an AVE of 0.47. 

In the context of exploratory research or model development, an AVE ≥ 0.45 is considered 

adequate if the composite reliability (CR) value is above 0.70 (Fornell and Larcker 1981; Na-Nan 

and Saribut 2020). 

 

Table 4. Summary of parameter estimation results and calculation of CR and AVE 
  

 Estimate λi S.E. C.R. P Sig. λi
2  1 - λi

2 CR AVE 

SH <-- KH 1 0.742    sig 0.551 0.449 

0.84 0.57 
PH <-- KH 2.631 0.932 0.59 4.458 *** sig 0.869 0.131 

TH <-- KH 0.385 0.632 0.143 2.685 0.007 sig 0.399 0.601 

AN <-- KH 1.764 0.672 0.472 3.737 *** sig 0.452 0.548 

SH1 <-- SH 1 0.574    sig 0.329 0.671 
0.76 0.62 

SH3 <-- SH 1.781 0.956 0.373 4.776 *** sig 0.914 0.086 

PH1 <-- PH 1 0.981    sig 0.962 0.038 
0.90 0.82 

PH2 <-- PH 0.577 0.822 0.049 11.804 *** sig 0.676 0.324 

TH1 <-- TH 1 0.481    sig 0.231 0.769 
0.68 0.54 

TH3 <-- TH 4.049 0.926 1.145 3.535 *** sig 0.857 0.143 

AN1 <-- AN 1 0.776      sig 0.299 0.701 

0.72 0.47 AN2 <-- AN 0.457 0.547 0.088 5.223 *** sig 0.602 0.398 

AN3 <-- AN 1.059 0.717 0.167 6.351 *** sig 0.514 0.486 

 

The internal consistency of all indicators measuring construction has achieved good 

composite reliability, with KH having a CR of 0.84, a PH of 0.90, a SH of 0.76, a of 0.72, and a 

TH with a CR of 0.68. A CR of ≥ 0.70 is the best value, while values within 0.6 and 0.7 were 

accepted (Baharum et al. 2023; Hair et al. 2019). These results demonstrate that the dimensions of 

forest structure, productivity, soil, and anthropogenic factors are reliable for determining the 

quality of a valid forest. Additionally, the high loading factor of 0.93 suggests that productivity is 

the primary determinant of forest quality. Based on the analyzed perspectives, Table 5 presents 

the model fit test results for the 4th CFA model. 

 

Table 5. The results of the model fit test after the improved model 

Goodness of Fit Index Cut-off Value Model Results Information 

χ2 (Chi-square) 38.93  37.508 Fit (sig.1%) 

Probability ≥ 0.05 0.021 No fit 

RMSEA ≤ 0.08 0.075 fit 

GFI ≥ 0.90 0.942 fit 

SRMR ≤ 0.08 0.055 fit 

AGFI ≥ 0.90 0.881 Marginal fit 

TLI ≥ 0.90 0.943 fit 

CFI ≥ 0.90 0.922 fit 

NFI ≥ 0.90 0.966 fit 

CMIN/DF < 2 1.705 fit 

 

The selection of the fit index is based on the model's ability to assess the data fit, thereby 

ensuring the validity of the results obtained from CFA (Knekta et al. 2019). Hair et al. (2019) 
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stated that at least an index from the absolute and incremental fit categories should be used to 

obtain a good model fit. Furthermore, Jöreskog et al (2016) reported that the evaluation results 

should be considered during the model development phase. Regarding the results obtained, the 4th 

model supports the validity and reliability of forest quality. 

 

3.8. Development of Mathematical Equations 

The coefficient values used in the mathematical equation are obtained from the CFA model 

and loading factors (λi). These values describe the linear relationship between the latent construct 

and the observed indicators. However, in the CFA framework, each indicator was the result of 

measurements from a latent construct and an error component. The observed variable is a linear 

combination of the basic latent construct and measurement error. In this category, the loading 

factor refers to the extent to which a latent construct can be explained by an indicator (Hair et al. 

2019). The loading factor showed the proportional contribution of the forming indicator construct. 

The results showed that the higher the loading value, the more significant the indicator’s role in 

representing the construct in question. This played a crucial role in developing mathematical 

models, as the loading coefficient served as a linear weighting factor in the formation of a 

composite index. For instance, in developing the Forest Quality Index (FQI), loading factors were 

used as weights to prepare aggregate models that were considered both mathematically accurate 

and ecologically relevant (Brown 2015). The research on mathematical equations measuring forest 

quality was developed using linear additive equations by summing the contributions of each 

component. The weight of its dimension was determined to normalize the loading factor value, 

which produces the proportion of loading dimension i and the proportion of loading indicator i, as 

shown in Table 6. This table shows the weight of each factor and indicator used in measuring the 

quality of the forest. Forest productivity is the most influential factor in determining the quality of 

global forests, accounting for about 0.31, especially through aboveground biomass (AGB), which 

accounts for 0.544. The forest structure is also significant, with a global weight of 0.25, dominated 

by canopy stratification, which weighs 0.625. The soil factor, with a global weight of 0.21, is 

dominated by bulk density, which accounts for 0.658 of the total weight. The anthropogenic factor 

has a global weight of 0.23, with the dominant indicator being the distance from the road to forest 

quality, which weighs 0.38. The mathematical Equation 6 for measuring the quality of the resulting 

forest is as follows: 

FQI = 0.25 (0.375SH1 + 0.625SH3) + 0.31 (0.544PH1 + 0.456PH2) + 0.23 

(0.380AN1 + 0.268AN2 + 0.351AN3) + 0.21(0.342TH1 + 0.658TH3) 

(6) 

where FQI is the forest quality index, SH1 is the stand density score, SH3 is the canopy 

stratification score, PH1 is the AGB score, PH2 is the tree volume score, TH1 is the C organic 

score, TH3 is the bulk density score, AN1 is Score of distance from the road, AN2 is the score of 

distance from the settlement, AN3 is the score of distance from forest area utilization activities. 

Although the FQI model developed has undergone a structural validation process using the 

CFA approach, this study has not explicitly conducted an uncertainty or sensitivity analysis on the 

weight of indicators or dimensions. Weight uncertainty can arise from variations in loading factors 

influenced by data structures, sample sizes, and different local conditions. Similarly, FQI values 

can be sensitive to key indicators, such as changes in biomass or stand density. Therefore, follow-

up studies are strongly recommended to apply evaluations or simulations that can measure weight 

stability and evaluate how changes in indicator values affect the final FQI value. This step will 



Zulkarnain et al. (2025)   Jurnal Sylva Lestari 13(2): 617-641 

 632 

enhance the model’s reliability and strengthen its application in the context of forest management 

decision-making. 

 

Table 6. Weight of factors and indicators in forest quality assessment  

Objective Factors Relative 

Weight 

Global 

Weight 

Indicators Relative 

Weight 

Global 

Weight 

Forest 

Quality 

Forest structure 0.742 0.25 
Stand density 0.574 0.375 

Canopy stratification 0.956 0.625 

Forest 

productivity  
0.932 0.31 

AGB 0.981 0.544 

Tree volume 0.822 0.456 

Soil factor 0.632 0.21 
C organic score 0.481 0.342 

Bulk density 0.926 0.658 

Anthropogenic 

factor 
0.672 0.23 

Distance from the road 0.776 0.380 

Distance from the 

settlement 
0.547 0.268 

Distance from forest area 

utilization activities 
0.717 0.351 

 

As an initial foundation, the structure of the FQI model and the methodology developed in 

this study have great potential to be designed and integrated into national-level forest quality 

monitoring systems, such as the National Forestry Monitoring System (SIMONTANA), managed 

by the Ministry of Forestry. FQI offers a more comprehensive quantitative approach, combining 

various ecological dimensions and anthropogenic pressures that affect forest conditions. 

With a weighted format and measurable indicators, this index can be adapted as a composite 

indicator to evaluate the effectiveness of sustainable forest management in various management 

zones or site units. Additionally, remote sensing and open-source data (such as SoilGrids, 

DEMNAS, and Sentinel-2) enable FQI to be deployed on a regular and cost-efficient basis. This 

supports efforts to strengthen evidence-based policies in forestry planning, assess the performance 

of permit holders, and formulate incentives for the protection of areas of high conservation value. 

Thus, FQI is not only a scientific tool but can also serve as a practical tool to strengthen forest 

governance and forest sector performance reporting at the national and regional levels. 

 

4. Conclusions 

The present study developed a forest quality assessment model using CFA. This process 

consisted of six main dimensions: forest productivity, soil factors, forest structure, climatic 

conditions, anthropogenic and topographic activities. The analysis results revealed that forest 

productivity, forest structure, soil factors, and anthropogenic activities are valid for assessing 

forest quality. The topographic and climatic factors are invalid in the context of this research area. 

Forest productivity, as measured by biomass and tree volume indicators, is the most significant 

factor in assessing forest quality. The forest structure factor was assessed by stand density and 

canopy stratification. The anthropogenic factors were represented by proximity to roads, 

settlements, and land use intensity. The soil variables consisted of organic carbon content and bulk 

density. The integrative approach in this study, which combines multiple dimensions, allows for a 

holistic evaluation of forest quality assessment. In addition, by utilizing data from various sources, 

including terrestrial data, SoilGrids, DEMNAS, CHIRPS, NASA POWER, and Sentinel, a 

comprehensive dataset will be built, enabling more accurate and real-time modeling. The use of 
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various goodness-of-fit evaluations provides robust model validation, increasing confidence in the 

research. Although the developed model meets the criteria for statistical suitability, further 

research is needed to validate its application to different forest ecosystems. The absence of cross-

validation in this study is a methodological limitation that may lead to overfitting and reduce the 

model’s generalizability. Therefore, methodological improvements for further research are highly 

recommended. Given the limitations identified in the topographic and climatic dimensions, future 

model improvements should consider incorporating other environmental factors that may have 

greater significance in accurately assessing forest quality across diverse ecosystems. Integrating 

this model with remote sensing and machine learning technologies is highly recommended to 

improve the efficiency and accuracy of forest quality assessments on a larger scale. 
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