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ABSTRACT 
 

This study aims to estimate vegetation biomass and spatial distribution of 
carbon stocks in Special Purpose Forest Area (KHDTK) Mungku Baru, 
Palangka Raya City, Central Kalimantan Province, Indonesia. KHDTK 
Mungku Baru is a former logging area from the 1970s, which has 
undergone secondary succession and is dominated by pole and sapling 
levels. The approach used in this study involves remote sensing technology 
and field inventory data, which allows carbon stock calculations to be 
carried out quickly and accurately over a very large area. A linear 
regression algorithm was used to obtain a spatial model of carbon stocks 
using NDVI obtained from Landsat as a predictor. The developed model 
shows positive correlation results with an R2 value of 0.70; an Adjusted R2 
value of 0.69 with a p-level < 0.05, and RMSE of 42 tons/ha. This carbon 
stock mapping results serve as a basis for formulating various management 
plans for KHDTK Mungku Baru regarding ecological, social, and 
economic aspects.  

 
1. Introduction 

Global warming, caused by increased greenhouse gas emissions due to human activity, 
significantly impacts ecosystems and the environment. Deforestation and conversion of forest 
functions will affect global warming. Deforestation has caused carbon emissions that accelerate 
greenhouse gas concentration in the atmosphere. Land use changes from forests to agricultural 
land produce CO2 emissions (Barati et al. 2023; Jin et al. 2019), affecting ecosystems' ability to 
store carbon (Pan et al. 2023). Vegetation is one of the important components of natural carbon 
dioxide absorbers on land (Peng et al. 2023; Zhang et al. 2013), and can potentially affect land 
surface temperature. The loss of vegetation has a major impact on increasing land surface 
temperatures (Alkama et al. 2022; Ba et al. 2024; Li et al. 2023; Wolff et al. 2018). The negative 
impact of climate change on forestry is the potential for increased forest fires, pest outbreaks and 
hydro-geomorphic changes (Altman et al. 2024; Vacek et al. 2023).  

The Indonesian Government's efforts to address the issue of climate change, for example, 
focusing on risk reduction and disaster mitigation (Sarjito 2023) through Law Number 7 of 2021 
by imposing a tax on carbon emissions (Olpah et al. 2023), aims to reduce carbon emissions and 
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promote sustainable economic development (Diaz et al. 2023). One of the Indonesian 
Government's efforts to achieve the FOLU Net Sink 2030 initiative in the forestry sector is to 
increase carbon absorption through sustainable forest management (Simorangkir et al. 2024) and 
optimize unproductive land. Changing the management of Special Purpose Forest Area can be an 
alternative to reducing the negative impact of non-management of forests.  

Special purpose forest area (KHDTK) located in Mungku Baru Village, Rakumpit District, 
Palangka Raya City, Central Kalimantan, is known as KHDTK Mungku Baru, has been 
demarcated forest boundary delineation where in 2022. The next stage is a forest inventory to 
determine the potential of forest resources. Remote sensing technology allows forest inventory to 
be carried out efficiently, accurately and economically because land cover data can be monitored 
via satellite imagery. Remote sensing technology is used to measure the productivity of terrestrial 
ecosystems and biodiversity (Sannigrahi et al. 2020) and calculate carbon stocks and spatial 
distribution of biomass in forests (Shen et al. 2020; Zimbres et al. 2021). 

The study aimed to ascertain the spatial distribution of carbon stock in the KHDTK Mungku 
Baru area. The results of this study allow area managers to identify areas with significant potential 
for carbon emission reduction and regions that have been degraded, which will become the basis 
for developing the KHDTK Mungku Baru Long-Term Management Plan. 

 

2. Materials and Methods 

2.1. Study Area 

This research was conducted in KHDTK Mungku Baru, which covers 4,970.3 ha and 
functions as a forest production area (Fig. 1). It is one of the 26 KHDTKs in Indonesia managed 
by university. The area was a former logging area in the 1970s that underwent secondary 
succession. The pioneer tree type dominates the area.  

 
Fig. 1. Study area, NDVI Value and sampling plots. 
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2.2. Vegetation Inventory 

Vegetation inventory was carried out on 57 plots following transect roads. The plots 
measured 30 m × 30 m for tree and woody necromass levels, 10 m × 10 m for pole levels, 5 m × 
5 m for sapling levels and 2 m × 2 m for seedling and understory levels.  

The plots are square with dimensions of 30 m × 30 m according to the resolution of 1 pixel 
of Landsat-9 satellite imagery. The observation plots were determined using stratified purposive 
sampling, considering the NDVI class in the KHDTK Mungku Baru. NDVI value 0.6–0.7 covers 
an area of 39.02 ha or 0.8% of the KHDTK area; class 0.7–0.8 covers an area of 2,695.55 ha 
(54.3%); class 0.8–0.9 covers an area 2,162.29 ha (43.5%); this is the basis for determining the 
sampling plot.  

Quantitative parameters include tree type, diameter at breast height (1.3 m from the base of 
the tree), and height free of branches. The diameter at breast height is measured with the help of a 
phiband, the height of the free branches is measured using a clinometer, identification of tree 
species with the help of local communities and the Biodiversity, Forest Structure and Conservation 
Importance of the Mungku Baru Education Forest report. 
 
2.3. Carbon Stock Estimation 

Vegetation carbon stock data estimation is based on biomass and organic matter content in 
aboveground biomass, belowground biomass, litter, and dead wood. Calculating aboveground 
biomass, belowground biomass, litter, dead trees, and dead wood refers to (BSN 2019). Weight 
tree type refers to the Global Wood Density Database (Zanne et al. 2009) and Wood Densities of 
Tropical Tree Species (Reyes et al. 1992).  

Calculation of carbon vegetation biomass of saplings, poles and trees using the formula:  

Cveg  = !
"
𝜋 x dbh2 x t x f x BJ x BEF x %C organic (1) 

where carbon vegetation biomass (Cveg) is calculated using the diameter at breast height (dbh), 
tree height without branches (t), tree shape factor (f), wood density (BJ), biomass expansion factor 
(BEF), and a constant organic carbon percentage of 0.47% (%C organic). 

The seedling and understorey levels were measured destructively by cutting all parts of the 
vegetation above the ground surface from small plots measuring 0.5 x 0.5 m, calculating the total 
wet weight, and oven at 70–105o C until constant. Calculation of seedling and understorey carbon 
using the formula: 

Ctb= $
𝐵𝑘𝑠	𝑥	𝐵𝑏𝑡
𝐵𝑏𝑠 , x %C organic (2) 

where the seedling and understorey carbon (Cbt), units are kg; (Bks) is the dry weight of the sample; 
(Bbt) is the total wet weight, and (Bbs) is the wet weight of the sample. 

Calculation of vegetation root carbon using the formula: 
Cbbp= NAP x Bap x %C organic (3) 

where to calculate the total belowground biomass carbon stock (Cbbp) is given by multiplying the 
aboveground biomass (Bap) by the shoot root ratio value (NAP) and incorporating the organic 
carbon percentage of 0.47%. Bap is a term for aboveground biomass, which consists of biomass 
of vegetation at the sapling, pole, and tree level, as well as biomass from seedlings and understory 
plants. 
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Litter necromass, taken from a 0.5 x 0.5 m plot that is the same as the observation plot for 
seedlings and understorey, calculate the total wet weight, take a sample of + 300 gr, oven at a 
temperature of 70–105o C until constant. The equation for calculating litter carbon refers to 
equation 2. 

Woody necromass is divided into dead trees and dead wood. Calculation of dead trees with 
the formula: 

Cdead tree= !
"
𝜋 x dbh2 x t x f x BJ x %C organic  (4) 

Cdead wood= 1
4𝜋 $

𝐷! + 𝐷1
2𝑥100 ,

1

 x p x BJ x %C organic (5) 

where D1 is the diameter of the base of the dead wood and D2 is the diameter of the tip of the dead 
wood. 

The calculation of total carbon stocks is a modification of (BSN 2019), with units of kg/plots, 
to make it easier to find the relationship between NDVI values and total carbon stocks in each plot. 
Assuming the plot size is the same as the resolution of 1 pixel of Landsat 9 imagery: 

Cn= 
𝐶5
1000

10000
𝑙789:

 (6) 

where Cn is the carbon content/plot in each carbon pool, units ton/ha; Cx is the carbon content in 
each carbon pool in each plot, units kg; lplot is the plot area in each carbon pool, units m2. 
 
2.4. Satellite Data Processing 

Landsat-9 imagery can be accessed through the United States Geological Survey (USGS) 
selected in the KHDTK Mungku Baru region. The chosen data is from September 2023, with a 
cloud cover of less than 5%. It is processed into vegetation index data using the Normalized 
Difference Vegetation Index (NDVI), utilizing the infrared and near-infrared channels on the 
previously corrected image.  

Radiometric correction is a process of correcting errors caused by optical system 
malfunctions, atmospheric interference of electromagnetic radiation energy, and errors resulting 
from the impact of solar elevation angles (Hussein 2022). Atmospheric correction aims to reduce 
the reflectance of objects after the normalization of lighting conditions and the removal of 
atmospheric effects. 

This index can also be used to measure the health level of trees, the stress level of trees, 
canopy density, and tree carbon reserves (Govaerts and Verhulst 2010), as well as assess regional 
and global environmental, ecological conditions (Hossain and Li 2021; Lin et al. 2022). Based on 
(Omar and Kawamukai 2021), the NDVI value is calculated using the Equation: 

NDVI= 
NIR - Red 

(7) 
NIR + Red 

where NIR is Near Infra Red Channel and RED is Red Channel. 
 
2.5. 	Spatial Carbon Stock Model 

Carbon stock estimation is done by creating a regression equation between NDVI and carbon 
stock estimation in the field. The carbon potential estimation from the developed model is then 
compared with the carbon potential information from each test plot. Because it uses 1 variable, 
statistical parameters such as R2, adjusted R2, p-level and RMSE are used to assess the strength 
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of the relationship. The regression results are then used as a formula in the raster calculator feature 
of the QGIS program to predict carbon stock based on NDVI. 
 

3. Results and Discussion  

3.1. Diversity of Species, Biomass, and Carbon Stock  

The survey results obtained 1,469 vegetation from the level of saplings, poles and trees, with 
44 families and 111 species identified. Measurement of species diversity of a community using 
the Shannon Wiener index (H’), species evenness using the Evenness Index (E), and the Margalef 
index to measure species richness. Measurement of the Shannon-wiener Index for the sapling, pole 
and tree levels shows that species diversity in KHDTK Mungku Baru is quite high (Table 1). 
 
Table 1. Species diversity in KHDTK Mungku Baru 

Level Species diversity 
Shannon-wiener Evenness Margalef 

Sapling 3.61 0.85 11.32 
Poles  3.63 0.86 10.86 
Tree 3.44 0.83 9.99 

 
Meanwhile, species evenness indicates that the distribution among species is fairly balanced 

within the community. The species richness value suggests that the plant community in KHDTK 
Mungku Baru has high species richness, indicating that the habitat is in good condition. The total 
number of individuals found at the sapling level of all species was 485 individuals, the pole level 
was 436 individuals, and the tree level was 548 individuals. The types of plants with the highest 
number of individuals at the level of saplings, poles and trees are presented in Table 2. 
 
Table 2. Plants with the highest number of individuals 

Level Species Quantity H' 
Sapling Eugenia sp. 72 0.28 

 Calophyllum sp. 34 0.19 
 Calophyllum pulcherrimum 31 0.18 

  Palaquium sp. 29 0.17 
Pole Eugenia sp. 61 0.27 

 Calophyllum pulcherrimum 36 0.21 
 Calophyllum sp. 35 0.20 

  Tristaniopsis obovata 23 0.15 
Tree Combretocarpus rotundatus 56 0.23 

 Eugenia sp. 47 0.21 
 Calophyllum sp. 37 0.18 

  Shorea uliginosa 37 0.18 
 

The diversity of trees and complex stratification causes more solar radiation that can be 
converted into chemical energy, affecting plants’ metabolism. The result of the metabolism is the 
growth and addition of biomass. The existence of vegetation will affect the high levels of carbon 
storage on land. Biomass will continue to increase as photosynthesis occurs, as vegetation captures 
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carbon from the air and turns it into organic matter. Plant species’ static spatial structure and 
diversity will affect carbon storage in ecosystems through biomass and soil carbon (Yang et al. 
2024). The average tree level contributes 40.76% of aboveground biomass carbon stocks, 37.93% 
of pole levels, 15.94% of saplings and 5.37% of understory plants (Fig. 2).  

 
Fig. 2. Aboveground biomass carbon stocks  (tons/ha). 

 
The larger the diameter and height of the tree will positively impact the amount of 

aboveground carbon stocks. Tree-level plants, especially those with wide crowns, will influence 
the growth of pole levels, saplings, seedlings, and other understory plants. Solar radiation will 
easily reach the bottom of the forest if the vegetation that makes up it is trees with a narrow canopy, 
thereby helping in photosynthesis and preserving the understorey (Dormann et al. 2020). The 
existence of understory plants, in addition to storing carbon, also protects the soil from erosion 
and creates a soil microclimate (Wardhani et al. 2020). The more complex the vegetation structure, 
the greater the impact on the forest's carbon stock. 

Aboveground biomass contributes for the largest carbon compared to belowground biomass, 
litter and woody necromasses, which amounts to 79.97%, 13.91%, 3.20%, and 2.93% of the total 
carbon stock. The presence of litter, dead trees and dead wood also affects the carbon stock in the 
landscape. Even though the amount is small, dead material shows that carbon is still stored and 
not degraded directly in nature. 

 
3.2. NDVI Correlation with Carbon Stock 

NDVI values indicate vegetation density and health through satellite image analysis and 
have a positive correlation value with vegetation in forests, as well as detecting stress due to 
drought, tree death and other environmental impacts (Buras et al. 2021). Estimating carbon stock 
by utilizing NDVI and establishing regression equations between NDVI measurements and field-
based carbon stock calculations. Field-based linear regression analysis of carbon stock and 
selected vegetation indices is shown in Table 3. The results of the NDVI and carbon stock 
regression are shown in Table 4. 
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Table 3. Linear regression between NDVI and carbon stock 
Regression Statistics 

Multiple R 0.84 
R Square 0.70 
Adjusted R Square 0.69 
Standard Error 19.81 
RMSE 42 

  
Table 4. Linear regression result between NDVI and carbon stock 

 Coeff. SE t Stat P-value Lower 
95% 

Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept -509.54 70.35 -7.24 2.63 -652.68 -366.41 -652.68 -366.41 
NDVI 787.16 89.33 8.81 3.48 605.42 968.90 605.42 968.90 

Notes: Coeff = Coefficients, SE = standard error. 
 

The resulting regression equation is y = 787.16x – 509.54. The model showed a strong fit to 
the data, as evidenced by the 𝑅2 value of 0.70 and the Adjusted 𝑅2 value of 0.69, which account 
for the proportion of variability explained by the independent variables when adjusting for the 
number of predictors. In addition, the model was statistically significant with a p-value of less than 
0.05, indicating that the observed relationships are unlikely to occur due to random chance. The 
Root Mean Square Error (RMSE) of 42 tonnes/ha reflects the average deviation between predicted 
and observed values, which measures the model’s predictive accuracy. Visually, the relationship 
is shown in Fig. 3. 

  
Fig. 3. Linear regression of the relationship between NDVI and carbon stock. 

 

The coefficient of determination value is 0.7018. This means the NDVI value can explain 
70.18% of the total carbon, while other variables influence the rest. This indicates a strong 
relationship between NDVI values, total carbon biomass, and necromass. The determination 
coefficient values are strong if greater than 0.67, moderate if 0.33–0.67, and weak if 0.19–0.33 
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(Chin and Marcoulides 1998). However, the equation has a drawback in this model, namely, if the 
NDVI value is below 0.65, the calculation results will produce a negative value, which may be 
ecologically or physically irrelevant or uninterpretable. However, data collection was carried out 
in areas with NDVI values above 0.7, so this model is still suitable for describing conditions in the 
area. 

 
3.3. Spatial Carbon Stock Distribution in KHDTK Mungku Baru 

The resulting regression equation used to predict the distribution of carbon stocks in the 
KHDTK Mungku Baru is spatially presented in Fig. 4. 

 
Fig 4. Distribution of carbon reserves in KHDTK Mungku Baru (tons/ha). 

 
3.4. Discussion 

The diversity of vegetation species found affects the amount of carbon stock. Carbon stock 
measurement in this study is based on the diameter at breast high, branch-free height and wood 
density.  Larger diameter and higher wood density will increase carbon stocks. Larger diameters 
and higher wood density will increase carbon stocks. Tree height substantially impacts greater 
carbon storage in aboveground biomass than poles, saplings and lower plants. This illustrates that 
larger tree diameters are associated with increased carbon storage capacity in vegetation. Trees 
with large diameters have a crucial function in adding to the carbon stocks in the forest (Enkossa 
et al. 2023; Hot Marnaek et al. 2024; Joshi et al. 2024; Mensah et al. 2020; Ng et al. 2021). 
Furthermore, the carbon store is influenced by wood density (Borges et al. 2021; Khan et al. 2020; 
Thakur et al. 2024). As the forest ages, the amount of plant material on the surface will increase, 
and there will be variations in how different tree species, such as softwood and hardwood (Aryal 
et al. 2024). 
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Necromass is a substantial source of organic matter in tropical rainforests, renowned for their 
better soil quality. Slow decomposition processes and erosion caused by rainfall affect the presence 
of materials on the soil surface. The level of biodiversity in planted tree species has a significant 
impact on the rate of decomposition (Getaneh et al. 2022). Greater tree species diversity results in 
increased decomposition rates. The decomposition rate will be accelerated by increased litter 
production and soil surface temperatures (Chimdessa 2023). 

The Mungku Baru KHDTK is dominated by pole and sapling levels, characterized by the 
highest species diversity index at the pole and sapling levels compared to the tree level. This 
indicates that the natural regeneration process is going well, leading to the potential for increased 
carbon storage in the KHDTK over time without significant disturbance. The natural regeneration 
process of an area is influenced by one of the availability of dispersal agents, for example 
Combretocarpus rotundatus, which is spread by wind (Blackham et al. 2014). Eugenia sp, C. 
rotundatus, and Shorea uliginosa are pioneer plants growing quickly in open conditions 
(Rochmayanto et al. 2021; Suwito et al. 2021).  

Pioneer plants, including tree and shrub species, play a role in stabilizing degraded soil 
conditions (Castilla et al. 2016), facilitating the transition from deforestation to secondary forest 
ecosystems (Nursanti et al. 2022). The presence of pioneer plants will accelerate the secondary 
succession process by building land cover, changing the surrounding microclimate and providing 
microhabitats for other plants. The impact will increase biodiversity, increase carbon conservation, 
and ecosystem sustainability.  (Smith et al. 2022).  

KHDTK Mungku Baru has a dominant NDVI value of 0.7 – 0.9, indicating dense and healthy 
vegetation conditions. High NDVI values indicate a higher level of photosynthesis, so much 
carbon is bound to plants and indicates a large biomass potential. Large biomass will increase the 
value of carbon reserves, helping to reduce the concentration of CO2 in the atmosphere. NDVI can 
be used to determine land coverage (Gandhi et al. 2015) and estimate biomass (Wang et al. 2016; 
Wani et al. 2021), and can predict carbon reserves in managed forest ecosystems (Chinembiri et 
al. 2023). 

Carbon stock measurements will be more precise if carried out directly in the field because 
this method can accurately capture data. However, implementing carbon stock inventory often 
faces several obstacles, such as the large area to be measured, high operational costs, and the need 
for significant human resources. To overcome these challenges, using satellite imagery can be an 
effective solution, allowing for large-scale data collection that is more efficient and resource-
saving. A combined approach between field inventory and vegetation indices (NDVI, SAVI, and 
ARVI) was used to spatially model aboveground biomass and carbon stocks of different land uses 
(Bordoloi et al. 2022). NDVI is one of the most important indicators used to detect vegetation 
cover in various periods using remote sensing. In addition, NDVI is used to assess the ecological 
conditions of the environment regionally and globally (Hossain and Li 2021; Lin et al. 2022).   

The resulting regression equation is y = 787.16x – 509.54 with an R2 value of 0.70, while 
the Adjusted R2 value is 0.69 with a p-level of <0,05 and an RMSE of 42 tons/ha. There is a strong 
correlation between carbon reserves and NDVI levels, meaning that higher NDVI values indicate 
larger carbon reserves. A geographic model map depicting the distribution of carbon stocks can 
assist managers in formulating their forthcoming management strategy for environmental, social, 
and economic sustainability. The manager of KHDTK Mungku Baru must establish a system for 
managing blocks and plots to facilitate the planning and organization of various management 
activities. These activities include rehabilitating areas with low NDVI values by utilizing natural 
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resources to minimize operational expenses and enhance species diversity, utilizing Non-Timber 
Forest Products (NTFPs) and environmental services to boost community income in forested areas, 
and carrying out forest protection and conservation initiatives. 
 

4. Conclusions 

This study successfully developed a spatial model of carbon stocks in the KHDTK Mungku 
Baru area, providing a detailed understanding of the spatial distribution of carbon stocks within 
the region. The findings highlight areas with significant potential for carbon emission reduction 
and degraded areas requiring rehabilitation. These insights are a critical foundation for informed 
decision-making and formulating the KHDTK Mungku Baru Long-Term Management Plan, 
enabling sustainable forest management practices and supporting conservation and climate change 
mitigation efforts. 
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