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ABSTRACT 

 
Araucaria cunninghamii has significant potential as a long-fiber pulpwood 

source in Indonesia; however, its utilization remains limited due to its 

dependence on imported raw materials. This study presents the results of a 
first-generation progeny trial designed to evaluate genetic variation and 

identify superior genotypes for future breeding programs. This study was 

conducted in Bondowoso, East Java; the experimental was included 80 

families from six provenances (Fakfak, Jayapura, Serui, Wamena, 
Manokwari, and Queensland) and designed by a Randomized Complete 

Block Design (RCBD); comprised of 6 provenances, 80 families, 4 blocks, 

4 trees per plot with a spacing of 4 m  2 m. After six years, the survival 

rates ranged from 98.30% to 99.61%, indicating a strong potential for 

adaptability. Significant differences were observed among families for 
height, diameter, and volume growth traits. Heritability estimates for 

height, diameter, and volume at the individual level were 0.30, 0.25, and 

0.27, respectively, and 0.48, 0.45, and 0.47 at the family level. Strong 
genetic correlations were found between height and diameter (r = 0.99), 

suggesting the potential for indirect selection through breeding. These 

findings highlight the genetic potential of A. cunninghamii for sustainable 
pulp production and inform future breeding strategies that focus on growth, 

adaptability, and wood quality.

 

1. Introduction 

Forests are essential for supplying raw materials to the wood and non-wood industries, yet 

many countries, including Indonesia, face increasing difficulties in meeting this demand 

sustainably. The limited availability of commercially valuable timber from natural forests has 

created a raw material bottleneck for the wood-processing sector, particularly in plywood and pulp 

production (Belleville et al. 2020; Gusamo 2024). Indonesia, for example, has over 230 active 

plywood processing units with capacities exceeding 6,000 m³ per year; yet, much of the raw 

material supply is still imported due to declining domestic resources (Ministry of Environment 
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and Forestry 2019). Over-reliance on natural forests contributes to deforestation and degradation, 

worsening environmental concerns (Austin et al. 2019; Ghazoul et al. 2015). Thus, to overcome 

forest degradation, the development and utilization of fast-growing species are important, 

especially species with high pulpwood potential (Kumar et al. 2015; Li et al. 2017, 2023; Martins 

et al. 2020; Wirabuana et al. 2024).  

Araucaria cunninghamii, known as hoop pine, is commonly used for saw timber and 

plywood. This species has high potential for the pulp and paper industry, as it contains high 

cellulose (Orchads 2014; Setiadi et al. 2021a, 2021b), similar to Pinus merkusii and Agathis 

loranthifolia (Purusatama et al. 2021). It is native to Papua, Indonesia, and northern Australia. 

According to Rizqiani et al. (2019), the total raw material requirements for Indonesia’s national 

pulp and paper industry amounted to 45 million m³ per year. Indonesia exported 4.7 million tons 

of pulp and 4.3 million tons of paper in 2017, with the majority of the raw materials sourced from 

Acacia and Eucalyptus. Due to the limited supply and cultivation scale, Araucaria has not been 

widely utilized at the industrial level. A study reveals that Araucaria timber can be an alternative 

raw material for high-quality pulp and paper as its cellulose content is very high (49.28%), and the 

lignin content reaches 29.15%, which is suitable for pulp (Setiadi et al 2021). Furthermore, this 

species has a straight pole, long fibers, and is adaptable to climate change, making it a priority for 

breeding (Bernardinis et al. 2023; Du et al. 2024; Li et al. 2017; Moreno et al. 2020; Osterkamp et 

al. 2017; Prasetyo et al. 2022).  

Therefore, it can be stated that A. cunninghamii presents considerable potential as a 

sustainable raw material for the pulp industry. Nonetheless, its incorporation into large-scale 

plantations has been constrained by the absence of high-quality planting material. According to Li 

et al. (2017) and Du et al. (2024), the natural population of A. cunninghamii exhibits limited 

genetic variation, which complicates achieving uniform growth performance and resilience to 

pests, diseases, and climate stress. To overcome this limitation, tree improvement through selective 

breeding and the establishment of progeny tests should be undertaken to achieve desirable traits, 

such as rapid growth, high biomass, and resilience to climate stress (Kumar et al. 2015; Matos et 

al. 2024). 

A. cunninghamii is a rare tropical tree species undergoing continuous genetic enhancement 

for over fifty years (Lott and Read 2021). The commercialization and genetic improvement of this 

species exemplify the dual economic and conservation advantages achievable in tropical tree 

species. Therefore, this study evaluated the growth and adaptability of A. cunninghamii at a 

provenance trial that comes from several provenances, which is established at Bondowoso, East 

Java. The findings will facilitate the establishment of enhanced genetic criteria for commercial 

cultivation, ensuring a sustainable and efficient provision of superior raw materials for the 

Indonesian pulp sector. 

 

2. Materials and Methods 

2.1. Study Site 

The first generation (F-1) A. cunninghamii progeny test plot in Bondowoso District, East 

Java Province, served as the study’s location. Wringinanom Village, Sukosari Sub-District, 

Bondowoso District, is the administrative location of the research forest (Fig. 1). With an average 

annual rainfall of 2,400 mm, the progeny test site has a climatic type B. The soil type is Andosol. 
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The site, situated 800 meters above sea level (masl), features level terrain with an average slope 

of 0–10% (Setiadi et al. 2021a).   

6  

Fig 1. Study site of first generation (F-1) A. cunninghamii progeny test. 

 

2.2. Materials 

The study involved a 6-year-old A. cunninghamii progeny test, and the genetic material used 

to build the test came from six provenances: one population from Queensland (CSIRO), which 

included 20 families, and five natural provenances of Papua (Fakfak, Sorong, Serui, Wamena, and 

Manokwari), which included 60 families. Table 1 lists the geographic locations and elevations of 

the six provenances. Fertilization was carried out every 6 months, starting at 1 and 2 years of age, 

using 60 g of NPK fertilizer per plant. Maintenance in the form of weed control was also carried 

out annually in the progeny test. 

 

Table 1. Seed sources information of progeny test of A. cunninghamii in Bondowoso, East Java 

(Setiadi and Susanto 2012) 

No Provenances Number of families Latitude (S) Longitude (W) Altitude (masl) 

1 Serui 11 02 - 34' 135 - 11' 800 

2 Wamena 28 04 - 21' 135 - 11' 1600 

3 Manokwari 12 02 - 59' 139 - 09' 1200 

4 Jayapura 6 04 - 25' 140 - 38' 1600 

5 Fakfak 7 02 - 34' 132 - 31' 900 

6 Queensland 16 26 - 52' 152 - 25' 1000 

 

2.3. Design and Data Analysis 

A Randomized Completely Block Design (RCBD) with 6 provenances, 80 families, 4 

blocks, and 4 trees per plot, spaced 4 m × 2 m, was used to create the progeny test. Every single 

tree was measured for the following characteristics: height, diameter, volume, and survival rate. 

By dividing the number of surviving plants by the number of original plants and multiplying the 
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result by 100%, the survival rate was determined. The stem diameter was measured at chest height 

(1.3 m), but the measured tree height was the entire height of the tree. Equation 1 was used to 

determine tree volume based on information on stem diameter and tree height (Setiadi et al. 2021a; 

2021b). 

V = ¼ π (D)2  T  f (1) 

where V is the tree volume (m3), D is the stem diameter (cm), T is the tree height (m), and f is the 

shape factor (0.486). 

Data on the average percentage of live plants per plot were used to analyze variance for plant 

adaptation using Equation 2 ( Baskorowati et al. 2022; Setiadi et al. 2021a; 2021b). 

Yijk = μ + Bi + Pj + Fk(Pj) + Eijk (2) 

where Yijk is the plot means of the kth family, jth provenances, ith replicate, μ is the overall mean, 

Bi is the effect of the ith replicate, Pj is the effect of the jth provenances, Fk(Pj) is the effect of the 

kth family nested in the jth provenances and Eijk is the residual error with a mean of zero. 

Analysis of variance was 119 performed using individual data for plant growth parameters 

(height, stem diameter, and tree volume). The analysis was conducted using Equation 3 

(Baskorowati et al. 2022; Setiadi et al. 2021a; 2021b). 

Yijk = μ + Bi + Pj + Fk(Pj) + Bi*F k(Pj) + Eijk (3) 

where Yijk is the plot means of the kthfamily, jth provenances, ithreplicate, μ is the overall mean, Bi 

is the effect of the ith replicate, Pj is the effect of the jth provenances, Fk(Pj) is the effect of the 

kthfamily nested in the jth provenances, Bi*F k(Pj is the interaction effect of ith replicate and 

kthfamily nested in the jth provenances, and Eijk is the residual error with a mean of zero. 

Using mixed model analysis, variance components were calculated. Additional tests using 

the Duncan Multiple Range Test (DMRT) at the 1% or 5% significance level were conducted to 

determine if there were differences among treatments, given that the results of the analysis of 

variance indicated significant differences. Individual (h2
i) and family (h2

f)  heritability values were 

estimated using the variance component of the family in the provenances using Equations 4 and 5 

(Baskorowati et al. 2022). 

h2
i = 

32
𝑓

2
𝑓+2

𝑓𝑏+2
𝑒
 (4) 

h2
f = 

32
𝑓

2
𝑓+2

𝑓𝑏/𝐵+2
𝑒/𝑁𝐵

 (5) 

where h2
i is the individual tree heritability, h2

f is the family tree heritability, 2f is the variance 

between families-within-provenances groups, 2
fb is the variance between families and 

replications, 2
e is the variance error, B is the mean of the number of replications, and N is the 

harmonic mean number of individuals per plot. 

Given that seeds were taken from open-pollinated parent trees in natural forests, where some 

seeds might be the product of family mating, the family variance component (2
f) was taken to 

represent one-third of the additive genetic variation (2A). Using Equations 6 and 7, estimated 

genetic (rg) and phenotypic (rp) correlations were determined (Baskorowati et al. 2022). 

rg = 
𝑓(𝑥𝑦)

(2
𝑓(𝑥)+2

𝑓𝑦)1/2 (6) 
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rp = 
𝑝(𝑥𝑦)

(2
𝑝(𝑥)+2

𝑝𝑦)1/2  

 

(7) 

where rg is the genetic correlations, f(xy) is the covariance of the two traits at the family level, σ2
f(x) 

is the family-level variance components of trait (x), σ2
f(y) is the family-level variance components 

of trait (y), rp is the phenotypic correlations, f(xy) is the phenotypic covariance of the two traits at 

the family level, σ2
p(x) is the phenotypic variance components of trait (x), and σ2

p(y) is the 

phenotypic variance components of trait (y). 

Equation 8 was used to forecast the genetic gain (ΔG) from selection-tested progeny 

(Baskorowati et al. 2022; Setiadi et al. 2021a; 2021b).  

ΔG = ℎ2
𝑖   𝑖  𝑝 (8) 

where ℎ2
𝑖  is the individual heritability of a trait, 𝑖 is the selection intensity, and p is the phenotypic 

variance components of trait (x). 

 

3. Results and Discussion  

3.1. Survival and Adaptability 

Survival rate is a crucial indicator of adaptability in progeny tests, particularly for exotic 

species introduced to new environments. At six years of age, the survival rate of A. cunninghamii 

ranged from 98.30% to 99.61%, with a mean value of 98.93%. This suggests that the species 

exhibits excellent adaptability to the environmental conditions of Bondowoso, East Java (Resende 

et al. 2021; Stuepp et al. 2020). This performance exceeds survival rates reported for long-term 

trials in Brazil, where survival decreased to 78% by age 29 (Santos et al. 2021). These values are 

also significantly higher compared to Pinus sylvestris (97.748) at age five, which was planted at 

Bayanbulag, Mongolia (Sukhbaatar et al. 2020). The high survival observed here may be attributed 

to ecological similarities between the test site and the species’ native range. Nikels and Arnold 

(2018) stated that A. cunninghamii is primarily found in montane forests from West Papua (around 

1°S) through the Owen Stanley Range in PNG (to about 10°30′S), occurring at elevations between 

500 and 3,355 masl. In Queensland, this species is found from Shelburne Bay (11°40′S) to northern 

New South Wales (approximately 31°S), with an altitudinal range from sea level to 1,000 masl. 

Therefore, this finding is consistent with Resende et al. (2021), who noted that exotic conifers 

often retain high survival when planted in ecoclimatic analogues. Santos et al. (2021) emphasize 

that the survival rate is a key early indicator of successful genetic transfer in provenance trials, 

particularly under uniform silvicultural practices. 

Analysis of variance (Table 2) indicated no significant difference in survival among 

provenances (p > 0.05), which is consistent with findings in exotic conifer trials under 

homogeneous site conditions (Stuepp et al. 2020). Among the provenances, Fakfak, Queensland, 

and Manokwari demonstrated slightly higher survival, while Jayapura, Wamena, and Serui 

exhibited relatively lower survival, potentially due to site-specific pest or disease pressures (Fig. 

2a). The uniformly high survival across provenances suggests ecological compatibility, yet minor 

differences, with Fakfak and Queensland performing best, may indicate genetic influences on site 

adaptation. 
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Table 2. Variance analysis of survival rate and growth of A. cunninghamii progeny trial at 6 years 

in Bondowoso, East Java  

Source of variation 
Degrees of 

freedom 

Survival 

rate 
Height Diameter Volume 

Replications  3 70.42155 55.37785** 30.85839** 0.00106** 

Provenances  5 11.29144 ns 1.71488** 1.67252** 0.00004** 
Family (Provenances) 74 32.07948ns 3.00613** 2.83807** 0.00007** 

Rep*Fam (Prov) 236  1.50901** 1.52663** 0.00004** 

Error 946  0.55192 0.00001 0.00001 

Error 237 29.435592    
Notes: ns = not significantly different, ** = significantly different at the 0.01 level. 

 

3.2. Growth Performance Across Provenances 

Significant variation in growth traits (height, diameter, and volume) among provenances, 

families, and block interactions indicates a strong genetic basis and micro-site influence on 

phenotype (Table 2). Provenances from Jayapura and Serui exhibited higher growth (Costa et al. 

2016; Xie et al. 2024), i.e., diameter, height, and volume (Fig. 2b-d), likely due to environmental 

similarity between their origin and the trial site, particularly in elevation. Altitude has previously 

been shown to affect tree performance in tropical species (Costa et al. 2016; Xie et al. 2024). 

According to Raymond and Johnson (2022) and Santos et al. (2021), growth differences 

among provenances of A. cunninghamii are heavily influenced by altitude, precipitation regimes, 

and photoperiod (Huang et al. 2020). Raymond and Johnson (2022) found that altitude and 

photoperiod at the origin sites significantly affected early growth and form traits. Provenances 

from higher altitudes showed slower growth but better form, likely due to photoperiodic cues. This 

aligns with the superior performance of Jayapura (1,600 masl) in Bondowoso (800 masl), where 

similarities in temperature and rainfall may enhance growth vigor. 

At six years, mean height ranged from 6.87 to 7.12 m, and diameter from 6.15 to 6.47 cm, 

reflecting a vigorous growth pattern compared to other conifer trials. For example, A. angustifolia 

in Brazil attained only 5.48 m in height at age seven (Resende et al. 2021), while P. sylvestris in 

Northern Mongolia showed 5.46 m at age five (Sukhbataaral 2020). This underscores the 

suitability of A. cunninghamii for plantation forestry in tropical highlands. 

The observed family and provenance variation provide substantial scope for selection and 

genetic improvement. As previously noted in studies of P. radiata, A. angustifolia, and P. 

caribaea, early height and diameter traits exhibit significant inter-provenance differences that can 

be harnessed in breeding programs (Mingliang et al. 2023; Nantongo et al. 2020). Kanowski and 

Vanclay (2021) found a significant genotype-by-environment interaction. Growth was optimized 

when provenances were matched to rainfall regimes and altitude conditions similar to those of 

their native habitats (Mingliang et al. 2023; Nantongo et al. 2020). 

 

3.3. Heritability and Genetic Control 

Heritability is a key parameter in quantifying the genetic control over phenotypic traits. The 

moderate to high heritability estimates observed: 0.30 (height), 0.25 (diameter), and 0.27 (volume) 

at the individual level, suggest substantial genetic control over these traits (Lock and Whittle 2021; 

White et al. 2020) (Table 3). According to Sanchez et al. (2024), in the study of P. pinaster, these 

values indicate moderate to strong genetic control, validating the potential for effective selection, 
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particularly at the family level. Family-level heritabilities were even higher, suggesting that 

selection at the family level could accelerate genetic gain in breeding programs. 

  

a b 

  

  

c d 

Fig. 2. The average survival rate and growth parameters of A. cunninghamii progeny trial at 6 

years old (the numbers followed by the same letters were not significantly different at the 0.01 

level). 

 

Comparable findings were reported by Espinoza et al. (2014), who showed similar individual 

heritability values for the first-generation P. radiata in South African trials (0.12-0.20). These 

results were also supported by Balkrishna et al. (2025) and Baskorowati et al. (2022) in other 

tropical tree species. These values are well within the range (0.20-0.45) typically considered 
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adequate for tree improvement (Nambiar 2019). Resende et al. (2021) argued that heritability in 

early ages is a reliable predictor for rotation age traits, especially under uniform site conditions. 

As expected, heritability tends to decrease over time due to increased environmental influence; 

thus, early-age selection (5-10 years) is optimal for species with rotation ages of 25-50 years (Lai 

et al. 2017; Ornella et al. 2024). 

 

Table 3. Estimated values of individual and family heritability of height, diameter, and volume in 

test plots of 6-year-old A. cunninghamii progeny test  

Traits Individual heritability (h2
i) Family heritability (h2

f) 

Height 0.30 0.48 

Diameter  0.25 0.45 
Volume  0.27 0.47 

 

3.4. Genetic and Phenotypic Correlations 

High genetic correlations between height and diameter (0.99), height and volume (0.99), and 

diameter and volume (0.98), along with high phenotypic correlations, suggest that indirect 

selection for height can effectively improve overall yield (Chen et al. 2018; Dias et al. 2022) 

(Table 4). This finding is consistent with those in P. radiata and Eucalyptus spp., where high 

correlations facilitate simplified selection arrangements (Chen et al. 2018). Strong positive 

phenotypic correlations among the traits were also recorded in the progeny test of indigenous P. 

merkusii from East Java (Purwanto et al. 2022). 

Furthermore, Dias et al. (2022) highlighted that genetic correlations above 0.80 often suggest 

pleiotropic effects, enabling breeders to prioritize traits with easier or less expensive phenotyping 

methods. In this case, stem diameter measurements could substitute for total height in mature trees, 

where height measurements can be challenging in older stands. 

 

Table 4. Estimated genetic (rg) and phenotypic correlation (rp) among traits of the 6-year-old 

progeny test of A. cunninghamii in Bondowoso, East Java 

                  rg 

                 rp 
Height Diameter Volume 

Height   - 0.99 0.99 

Diameter  0.86 - 0.98 

Volume  0.91 0.96 - 
Notes: genetic correlation (rg) between traits (above diagonal), phenotypic correlation (rp) between traits (below diagonal). 

 

3.5. Genetic Structure and Provenance Clustering 

Cluster analysis based on Nei (1972) standard genetic distance revealed the existence of two 

distinct genetic groups among the six A. cunninghamii provenances tested in Bondowoso: Group 

1: Serui and Wamena, and Group 2: Fakfak, Jayapura, Manokwari, and Queensland (Table 5 and 

Fig. 3). Interestingly, this clustering does not reflect the geographical proximity of the 

provenances. For instance, Serui and Manokwari, despite being relatively close geographically, 

were assigned to separate clusters. This suggests that genetic divergence is not solely shaped by 

geographic distance, but is likely influenced by factors such as oceanic barriers and limited gene 

flow, a pattern similarly reported in mangrove forests (Da Silva et al. 2021; Wee et al. 2020). 

 



Pamungkas et al. (2025)   Jurnal Sylva Lestari 13(3): 747-760 

 755 

Table 5. Genetic distance (bottom diagonal) and genetic identity (top diagonal) in the 6-year-old 

A. cunninghamii progeny test in Bondowoso, East Java, based on Nei’s standard genetic distance 

(1972) 

Provenance Fakfak Jayapura Manokwari Queensland Serui Wamena 

Fakfak ----- 3.881 0.625 3.636 1.490 4.680 

Jayapura 3.881 ----- 1.833 2.777 3.207 2.462 

Manokwari 0.625 1.833 ----- 4.218 0.957 3.406 

Queensland 3.636 2.777 4.218 ----- 2.363 4.218 

Serui 1.490 3.207 0.957 2.363 ----- 0.595 

Wamena 4.680 2.462 3.406 4.218 0.595 ----- 

 

Such disjunctions indicate reproductive isolation and fragmented gene pools, which are 

common in archipelagic systems where allopatric differentiation occurs due to physical barriers 

such as seas and mountains (Moeinizade et al. 2019). The clustering pattern emphasizes the need 

for strategic crossing between different clusters to maximize heterosis (hybrid vigor). This method 

is promoted by Princepe et al. (2024) to combine complementary genetic traits while preserving 

allelic richness. Furthermore, understanding the structure of genetic diversity is vital for 

conservation and breeding. It helps identify potential inbreeding risks, ensures broad genetic 

representation in seed orchards, and enhances the long-term adaptability of plantations to biotic 

and abiotic stressors, which is particularly significant in the context of climate variability 

(Daetwyler et al. 2015; Rangan et al. 2023). 

 
Fig. 3. Kinship relationship of 6 provenances of A. cunninghamii based on standardised 

genetic distance according to Nei (1972) by the UPGMA method. 

 

4. Conclusions 

The six-year evaluation of A. cunninghamii in Bondowoso revealed strong genetic variation 

in survival and growth traits, high heritability estimates, and positive genetic correlations, 

demonstrating the species’ substantial potential for selective breeding in tropical pulpwood 

plantations. A growth performance of A. cunninghamii at six years showed a survival rate between 
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98.30% and 99.61%. The estimated heritability values for height, diameter, and volume were 0.30, 

0.25, and 0.27, respectively. The family level heritability ranges from 0.45 to 0.48 for the growth 

parameter. Meanwhile, genetic, and phenotypic correlation between height and diameter were 

positive and substantial, with values of 0.99 and 0.86, respectively. The elevated survival rates and 

growth performance from several genetic origins validate the species’ tolerance to the climatic 

circumstances of Bondowoso, East Java. Heritability estimates for height, diameter, and volume 

attributes, ranging from moderate to high, provide significant evidence of genetic influence, 

affirming the viability of early selection in breeding programs. The robust genetic relationships 

among growth parameters support indirect selection strategies, facilitating selection regardless of 

geographic proximity, and highlighting the importance of preserving extensive genetic diversity 

in population breeding. This diversity is crucial for enhancing long-term adaptability and 

resilience, especially in a changing climate. The findings advocate for prompt progress in 

identifying superior families and establishing seed orchards. Future research should assess long-

term performance to confirm the initial benefits of selection and incorporate genomic tools to 

further enhance progress. 
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