Karakterisasi Pelet Kayu Karet (Hevea brasiliensis) Hasil Torefaksi dengan Menggunakan Reaktor Counter-Flow Multi Baffle (COMB) (Characterization of Rubberwood (Hevea brasiliensis) Pellets Torrefied with Counter-Flow Multi Baffle (COMB) Reactor)
DOI:
https://doi.org/10.23960/jsl37321-331Abstract
Indonesia has the largest rubberwood (Hevea brasiliensis) plantation area in the world. Rubberwood is mainly planted for latex production and as latex production declines with age, rubberwood is generally felled. The logging waste and industrial waste of rubberwood-based products could be utilized as raw materials to produce biomass pellets. The quality of biomass pellets can be increased through torrefaction, a thermal process in the temperature range of 200-300°C under an inert atmosphere. This study aimed to evaluate the effect of torrefaction on the characteristics of rubberwood pellets. The torrefaction of rubberwood pellets was conducted using the Counter-Flow Multi Baffle (COMB) reactor, a reactor that could perform torrefaction within a short residence time of up to 5 min. The temperature used in this study was 200°C, 250°C, dan 300°C with a residence time of 3 min. The color change, physical properties, chemical composition, and heating value were evaluated. The results showed that the pellets color changed from light brown into black pellets, showing the overall color change (E*) of 29,12, 54,27, and 66,71, after torrefaction at 200°C, 250°C, and 300°C, respectively. The equilibrium moisture content of the pellets decreased from 12,25% to 3,54%. The water immersion test also showed that the torrefied pellets have a better hydrophobicity, which is an advantage when pellets are stored in a humid condition. The oven-dry density of pellet decreased from 1,15 g/cm3 to 1,09 g/cm3, 1,04 g/cm3, and 0,96 g/cm3, after torrefaction at temperatures of 200°C, 250°C, and 300°C, respectively. Torrefaction caused a decrease of cellulose and hemicellulose contents, an increase of lignin content, and a remarkable increase in the heating value of 1,71-18,32% with increasing torrefaction temperature. The results proposed that torrefaction using the COMB reactor could provide a great improvement in the quality of rubberwood pellets to improve the additional value of the products.
Keywords: black pellet, Counter-Flow Multi Baffle, rubberwood (Hevea brasiliensis), torrefaction
Downloads
References
Admojo, L., and Setyawan, B. 2018. Potensi Pemanfaatan Lognoselulosa dari Biomassa Kayu Karet (Hevea brasiliensis Muell Arg.). Warta Perkaretan 37(1): 39–50. DOI: 10.22302/ppk.wp.v37i1.529
Adrian, A., Sulaeman, R., and Oktorini, Y. 2015. Karakteristik Wood Pellet dari Limbah Kayu Karet (Hevea brasilliensismuell. Arg) sebagai Alternativ Sumber Energi Terbarukan. Jurnal Online Mahasiswa Fakultas Pertanian Universitas Riau 2(2): 1–6.
Aripin, P. 2013. Pengaruh Torefaksi terhadap Sifat Fisik Pellet Biomassa yang Dibuat Dari Bahan Baku Bagas Tebu. Universitas Indonesia.
Azhar, ., and Rustamaji, H. 2009. Bahan Bakar Padat dari Biomassa Bambu dengan Proses Torefaksi dan Densifikasi. Jurnal Rekayasa Proses 3(2): 26–29. DOI: 10.22146/jrekpros.563
Badan Pusat Statistik. 2018. Statistik Karet Indonesia 2017. Badan Pusat Statistik, Jakarta, Indonesia.
Badan Standardisasi Nasional. 2002. Metode Pengujian Berat Jenis Kayu dan Bahan dari Kayu dengan Cara Pengukuran. Badan Standardisasi Nasional (BSN), Jakarta, Indonesia.
British Standards Institution. 2017. BS EN ISO 18134-2:2017. Solid Biofuels - Determination of Moisture Content - Oven Dry Method. Part 2: Total Moisture - Simplified Method. British Standards Institution (BSI).
Direktorat Jenderal Perkebunan. 2017. Statistik Perkebunan Indonesia Komoditas Karet 2015-2017. Sekretariat Direktorat Jenderal Perkebunan, Direktorat Jenderal Perkebunan, Kementerian Pertanian, Jakarta, Indonesia.
Esteves, B. M., and Pereira, H. M. 2009. Wood Modiï¬cation by Heat Treatment: A Review. BioResources 4(1): 370–404.
Fernando, A. Q., and Helwani, Z. 2016. Torefaksi Tandan Kosong Sawit: Pengaruh Kondisi Proses terhadap Nilai Kalor Produk Torefaksi. Jurnal Fakultas Teknik 3(2): 1–4.
Hanun, F. 2014. Nilai Kalor Kayu yang Memiliki Kerapatan dan Kadar Lignin Berbeda. Institut Pertanian Bogor (IPB).
Harun, N. H. H. M., Wahid, F. R. A. A., Saleh, S., and Samad, N. A. F. A. 2017. Effect of Torrefaction on Palm Oil Waste Chemical Properties and Kinetic Parameter Estimation. Chemical Engineering Transactions 56: 1195–1200. DOI: 10.3303/CET1756200
Hidayat, W., and Febrianto, F. 2018. Teknologi Modifikasi Kayu Ramah Lingkungan: Modifikasi Panas dan Pengaruhnya terhadap Sifat-sifat Kayu. Pusaka Media, Bandar Lampung.
Hidayat, W., Febrianto, F., Purusatama, B. D., and Kim, N. H. 2018a. Effects of Heat Treatment on the Color Change and Dimensional Stability of Gmelina arborea and Melia azedarach Woods. in: E3S Web of Conferences M. Amin, ed. EDP Sciences, Palembang, Indonesia 03010. DOI: 10.1051/e3sconf/20186803010
Hidayat, W., Hasanudin, U., Iryani, D. A., Haryanto, A., Amrul, ., Kim, S., and Lee, S. 2018b. Torrefaction of Wood Pellets using Counter Flow Multi-Baffle (COMB) Technology. in: Annual International Symposium of Institute of Forest Science (KNUIFS 2018) KNU Institute of Forest Science, Chuncheon, Republic of Korea 7.
Hidayat, W., Jang, J. H., Park, S. H., Qi, Y., Febrianto, F., Lee, S. H., and Kim, N. H. 2015. Effect of Temperature and Clamping during Heat Treatment on Physical and Mechanical Properties of Okan (Cylicodiscus gabunensis [Taub.] Harms) Wood. BioResources 10(4): 6961–6974. DOI: 10.15376/biores.10.4.6961-6974
Hidayat, W., Qi, Y., Jang, J. H., Febrianto, F., and Kim, N. H. 2017a. Effect of Mechanical Restraint on the Properties of Heat-Treated Pinus koraiensis and Paulownia tomentosa Woods. BioResources 12(4): 7539–7551. DOI: 10.15376/biores.12.4.7452-7465
Hidayat, W., Qi, Y., Jang, J. H., Febrianto, F., Lee, S. H., Chae, H. M., Kondo, T., and Kim, N. H. 2017b. Carbonization Characteristics of Juvenile Woods from Some Tropical Trees Planted in Indonesia. Journal of the Faculty of Agriculture, Kyushu University 62(1): 145–152.
Hidayat, W., Qi, Y., Jang, J. H., Febrianto, F., Lee, S. H., and Kim, N. H. 2016. Effect of Treatment Duration and Clamping on the Properties of Heat-Treated Okan Wood. BioResources 11(4): 10070–10086. DOI: 10.15376/biores.11.4.10070-10086
Hidayat, W., Qi, Y., Jang, J. H., Park, B. H., Banuwa, I. S., Febrianto, F., and Kim, N. H. 2017c. Color Change and Consumer Preferences towards Color of Heat-Treated Korean White Pine and Royal Paulownia Woods. Journal of the Korean Wood Science and Technology 45(2): 213–222. DOI: 10.5658/WOOD.2017.45.2.213
Iryani, D. A., Kumagai, S., Nonaka, M., Sasaki, K., and Hirajima, T. 2017. Characterization and Production of Solid Biofuel from Sugarcane Bagasse by Hydrothermal Carbonization. Waste and Biomass Valorization 8(6): 1941–1951. DOI: 10.1007/s12649-017-9898-9
Jämsä, S., and Viitaniemi, P. 2001. Heat Treatment of Wood: Better Durability without Chemicals. in: Proceedings of special seminar Antibes, France.
Lukmandaru, G., Susanti, D., and Widyorini, R. 2018. Sifat Kimia Kayu Mahoni yang Dimodifikasi dengan Perlakuan Panas. Jurnal Penelitian Kehutanan Wallacea 7(1): 37–46.
Maryenti, R., Komalasari, K., and Helwani, Z. 2017. Pembuatan Bahan Bakar Padat dari Pelepah Sawit Menggunakan Proses Torefaksi pada Variasi Suhu Waktu Torefaksi. Jurnal Online Mahasiswa Fakultas Teknik Universitas Riau 4(1): 1–4.
Nasrin, A. B., Choo, Y. M., Lim, W. S., Joseph, L., Michael, S., Rohaya, M. H., Astimar, A. A., and Loh, S. K. 2011. Briquetting of Empty Fruit Bunch Fibre and Palm Shell as a Renewable Energy Fuel. Journal of Engineering and Applied Sciences 6(6): 446–451. DOI: 10.3923/jeasci.2011.446.451
Salca, E. A., Kobori, H., Inagaki, T., Kojima, Y., and Suzuki, S. 2016. Effect of Heat Treatment on Colour Changes of Black Alder and Beech Veneers. Journal of Wood Science 62(4): 297–304. DOI: 10.1007/s10086-016-1558-3
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., and Crocker, D. 2015. Determination of Structural Carbohydrates and Lignin in Biomass. Colorado.
Suganal, S., and Hudaya, G. K. 2019. Bahan Bakar Co-Firing dari Batubara dan Biomassa Tertorefaksi dalam Bentuk Briket (Skala Laboratorium). Jurnal Teknologi Mineral dan Batubara 15(1): 31–48. DOI: 10.30556/jtmb.Vol15.No1.2019.971
Syamsiro, M. 2016. Peningkatan Kualitas Bahan Bakar Padat Biomassa dengan Proses Densifikasi dan Torrefaksi. Jurnal Mekanika dan Sistem Termal 1(1): 7–13.
Valverde, J. C., and Moya, R. 2014. Correlation and Modeling between Color Variation and Quality of the Surface between Accelerated and Natural Tropical Weathering in Acacia mangium, Cedrela odorata and Tectona grandis Wood with Two Coating. Color Research and Application 39(5): 519–529. DOI: 10.1002/col.21826
Warsono, Hasanudin, U., Iryani, D. A., Haryanto, A., Amrul, Hidayat, W., Kim, S., Yoo, J., and Lee, S. 2019. Cooperation Research for Torrefaction Technology. in: Green Technology Partnership Initiative (GTPI) Technology Seminar Badan Pengkajian dan Penerapan Teknologi (BPPT) Pp. 20.
Widarti, A. 2017. Energi Terbarukan dari Batang Kelapa Sawit: Konversi Menggunakan Proses Torefaksi. Institut Pertanian Bogor.
Downloads
Published
How to Cite
Issue
Section
Statistics
PDF downloaded: 2112 times
Metrics
License
Copyright (c) 2019 tri rubiyanti
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 Licence that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).