Forest Carbon Modeling in Poplar and Black Locust Short Rotation Coppice Plantation in Hungary
DOI:
https://doi.org/10.23960/jsl.v12i2.883Abstract
Forest carbon dynamic modeling for estimating the carbon stock in short rotation coppice bioenergy plantation in Hungary will be vital for better comprehending the role of black locust (Robinia pseudoacacia) and poplar (Populus sp.) in carbon dioxide sequestration from the atmosphere. The research aims were to estimate the potential carbon stock and describe the carbon distribution of the short rotation coppice bioenergy plantation above and below ground. Various sources were used to acquire parameterization data for developing forest carbon dynamic models. CO2FIX modeling V.3.2 was utilized in the data analysis to estimate the total carbon stock in biomass, soil, harvested wood products, and bioenergy compartments. Modeling has been around for 45 years. In this research, the total carbon stock of black locust and poplar at the end of the simulation period was 64.13 and 131.08 MgC.ha-1, respectively. The average carbon allocation above and below ground for black locust and poplar was 0.76, 19.76, 1.80, and 21.67 MgC.ha-1, respectively. In conclusion, poplar outperformed black locust regarding carbon storage in the short rotation coppice bioenergy plantation. Below ground carbon allocation was much higher than above ground. Therefore, more attention should be paid on below ground allocation through environmentally friendly soil management.
Keywords: bioenergy plantation, carbon dynamics, climate change mitigation, CO2FIX model, fast growing species
Downloads
Downloads
Published
How to Cite
Issue
Section
Statistics
PDF downloaded: 228 times
Metrics
License
Copyright (c) 2024 Budi Mulyana, András Polgár, Andrea Vityi
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 Licence that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).