Bio-Polyurethane Resins Derived from Liquid Fractions of Lignin for the Modification of Ramie Fibers

Authors

  • Manggar Arum Aristri Research Center for Biomaterials, Indonesian Institute of Sciences
  • Muhammad Adly Rahandi Lubis Research Center for Biomaterials, Indonesian Institute of Sciences
  • Raden Permana Budi Laksana Research Center for Biomaterials, Indonesian Institute of Sciences
  • Faizatul Falah Research Center for Biomaterials, Indonesian Institute of Sciences
  • Widya Fatriasari Research Center for Biomaterials, Indonesian Institute of Sciences
  • Maya Ismayati Research Center for Biomaterials, Indonesian Institute of Sciences
  • Asri Peni Wulandari Departement of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjajaran
  • Nurindah Indonesian Sweetener and Fiber Crops Research Institute, Ministry of Agriculture

DOI:

https://doi.org/10.23960/jsl29223-238

Abstract

Lignin is a biopolymer from agro-forestry biomass which provides greater prospects for higher added value applications in renewable and sustainable products. In this study, technical lignin from black liquor was used as a pre-polymer for the preparation of bio-polyurethane (Bio-PU) resins. Briefly, the isolated lignin was fractionated using ethyl acetate (EtAc) and methanol (MeOH). The liquid fractions of lignin, such as lignin-EtAc (L-EtAc) and lignin-methanol (L-MeOH), were mixed with 10% of polymeric isocyanate (based on the weigth of liquid fractions) to obtain Bio-PU resins. The isolated lignin, fractionated lignin, and lignin-derived Bio-PU resins were characterized using several techniques. The obtained Bio-PU resins then were used to modify ramie fibers using vacuum impregnation method. Fourier Transform Infrared (FTIR) spectroscopy, Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA) revealed that the isolated lignin had quite similar characteristics to lignin standar. Fractionation of lignin with EtAc and MeOH altered its characteristics. FTIR, DSC, and TGA showed that solid fractions of lignin had similar characteristics to lignin standard and isolated lignin, while the liquid fractions had characteristics from lignin and the solvents. The absorption band of isocyanate (-N=C=O) groups was shifted to 2285 cm-1 from 2240 cm-1 owing to the reaction with the -OH groups in lignin, forming urethane (R-NH-C=O-R) groups at 1605 cm-1 in Bio-PU resins. Thermal properties of Bio-PU resins derived from L-EtAc exhibited greater endothermic reaction compared to Bio-PU-L-MeOH. As a result, the free -N=C=O groups in Bio-PU resins have reacted with -OH groups on the surface of ramie fibers and improved its thermal properties. Modification of ramie fibers with Bio-PU resins improved the fibers' thermal stability by 15% using Bio-PU-LEtAc for 60 min of impregnation.

Keywords: bio-polyurethane resins, impregnation, lignin fractions, ramie fibers, thermal stability

Downloads

Download data is not yet available.

Author Biographies

Manggar Arum Aristri, Research Center for Biomaterials, Indonesian Institute of Sciences

Bio-based Adhesive and Sealant

Faizatul Falah, Research Center for Biomaterials, Indonesian Institute of Sciences

Lignin-based Biomaterials

Widya Fatriasari, Research Center for Biomaterials, Indonesian Institute of Sciences

Lignin-based Biomaterials

Maya Ismayati, Research Center for Biomaterials, Indonesian Institute of Sciences

Synthetic Biomaterials

References

Adler, E. 1977. Lignin chemistry: past, present and future. Wood Science and Technology 11(3): 169–218. DOI: 10.1007/BF00365615
Alinejad, M., Henry, C., Nikafshar, S., Gondaliya, A., Bagheri, S., Chen, N., Singh, S. K., Hodge, D. B., and Nejad, M. 2019. Lignin-Based Polyurethanes: Opportunities for Bio-Based Foams, Elastomers, Coatings and Adhesives. Polymers 11(7): 1202. DOI: 10.3390/polym11071202
Angelini, L. G., Lazzeri, A., Levita, G., Fontanelli, D., and Bozzi, C. 2000. Ramie (Boehmeria nivea (L.) Gaud.) and Spanish Broom (Spartium junceum L.) fibres for composite materials: Agronomical aspects, morphology and mechanical properties. Industrial Crops and Products 11(2–3): 145–161. DOI: 10.1016/S0926-6690(99)00059-X
Angelini, L. G., Scalabrelli, M., Tavarini, S., Cinelli, P., Anguillesi, I., and Lazzeri, A. 2015. Ramie fibers in a comparison between chemical and microbiological retting proposed for application in biocomposites. Industrial Crops and Products Elsevier B.V. 75: 178–184. DOI: 10.1016/j.indcrop.2015.05.004
Boerjan, W., Ralph, J., and Baucher, M. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54(1): 519–546. DOI: 10.1146/annurev.arplant.54.031902.134938
Buranov, A. U., Ross, K. a., and Mazza, G. 2010. Isolation and characterization of lignins extracted from flax shives using pressurized aqueous ethanol. Bioresource Technology Elsevier Ltd 101(19): 7446–7455. DOI: 10.1016/j.biortech.2010.04.086
Cateto, C. A., Barreiro, M. F., and Rodrigues, A. E. 2008. Monitoring of lignin-based polyurethane synthesis by FTIR-ATR. Industrial Crops and Products 27(2): 168–174. DOI: 10.1016/j.indcrop.2007.07.018
Chauhan, M., Gupta, M., Singh, B., Singh, a. K., and Gupta, V. K. 2014. Effect of functionalized lignin on the properties of lignin-isocyanate prepolymer blends and composites. European Polymer Journal Elsevier Ltd 52: 32–43. DOI: 10.1016/j.eurpolymj.2013.12.016
Cui, C., Sadeghifar, H., Sen, S., and Argyropoulos, D. S. 2013. Toward thermoplastic lignin polymers; Part II: Thermal & polymer characteristics of kraft lignin & derivatives. BioResources 8(1): 864–886. DOI: 10.15376/biores.8.1.864-886
Djafar, Z., Renreng, I., and Jannah, M. 2020. Tensile and Bending Strength Analysis of Ramie Fiber and Woven Ramie Reinforced Epoxy Composite. Journal of Natural Fibers 0478. DOI: 10.1080/15440478.2020.1726242
Dorez, G., Taguet, A., Ferry, L., and Lopez-Cuesta, J. M. 2013. Thermal and fire behavior of natural fibers/PBS biocomposites. Polymer Degradation and Stability Elsevier Ltd 98(1): 87–95. DOI: 10.1016/j.polymdegradstab.2012.10.026
Du, S. lan, Lin, X. bao, Jian, R. kun, Deng, C., and Wang, Y. zhong. 2015. Flame-retardant wrapped ramie fibers towards suppressing “candlewick effect” of polypropylene/ramie fiber composites. Chinese Journal of Polymer Science (English Edition) 33(1): 84–94. DOI: 10.1007/s10118-015-1560-z
Falah, F., Lubis, M. A. R., Triastuti, T., Fatriasari, W., and Sari, F. P. 2020. Utilization of Lignin from the Waste of Bioethanol Production as a Mortar Additive. Jurnal Sylva Lestari 8(3): 326. DOI: 10.23960/jsl38326-339
Gama, N., Ferreira, A., and Barros-Timmons, A. 2019. Cure and performance of castor oil polyurethane adhesive. International Journal of Adhesion and Adhesives Elsevier Ltd 95(July): 102413. DOI: 10.1016/j.ijadhadh.2019.102413
García, a., Toledano, a., Serrano, L., Egüés, I., González, M., Marín, F., and Labidi, J. 2009. Characterization of lignins obtained by selective precipitation. Separation and Purification Technology 68: 193–198. DOI: 10.1016/j.seppur.2009.05.001
Gindl, W., Zargar-Yaghubi, F., and Wimmer, R. 2003. Impregnation of softwood cell walls with melamine-formaldehyde resin. Bioresource Technology 87: 325–330. DOI: 10.1016/S0960-8524(02)00233-X
Griffini, G., Passoni, V., Suriano, R., Levi, M., and Turri, S. 2015. Polyurethane coatings based on chemically unmodified fractionated lignin. ACS Sustainable Chemistry and Engineering 3(6): 1145–1154. DOI: 10.1021/acssuschemeng.5b00073
Hermiati, E., Risanto, L., Lubis, M. A. R., Laksana, R. P. B., and Dewi, A. R. 2017. Chemical characterization of lignin from kraft pulping black liquor of Acacia mangium. in: AIP Conference Proceedings. DOI: 10.1063/1.4973132
Jönsson, A. S., Nordin, A. K., and Wallberg, O. 2008. Concentration and purification of lignin in hardwood kraft pulping liquor by ultrafiltration and nanofiltration. Chemical Engineering Research and Design 86(11): 1271–1280. DOI: 10.1016/j.cherd.2008.06.003
Jung, S., Joo, H., Jin, E., Song, Y., and Bae, H. 2015. International Journal of Biological Macromolecules Isolation and characterization of lignin from the oak wood bioethanol production residue for adhesives. International Journal of Biological Macromolecules Elsevier B.V. 72: 1056–1062. DOI: 10.1016/j.ijbiomac.2014.10.020
Kandimalla, R., Kalita, S., Choudhury, B., Devi, D., Kalita, D., Kalita, K., Dash, S., and Kotoky, J. 2016. Fiber from ramie plant (Boehmeria nivea): A novel suture biomaterial. Materials Science and Engineering C Elsevier B.V. 62: 816–822. DOI: 10.1016/j.msec.2016.02.040
Krutov, S. M., Voznyakovskii, A. P., Gribkov, I. V., and Shugalei, I. V. 2014. Lignin wastes: Past, present, and future. Russian Journal of General Chemistry 84(13): 2632–2642. DOI: 10.1134/S1070363214130222
Li, N., Yan, H., Xia, L., Mao, L., Fang, Z., Song, Y., and Wang, H. 2015. Flame retarding and reinforcing modification of ramie/polybenzoxazine composites by surface treatment of ramie fabric. Composites Science and Technology Elsevier Ltd 121: 82–88. DOI: 10.1016/j.compscitech.2015.07.013
Lubis, M. A. R., Park, B. D., and Lee, S. M. 2020. Microencapsulation of polymeric isocyanate for the modification of urea-formaldehyde resins. International Journal of Adhesion and Adhesives Elsevier Ltd 100: 102599. DOI: 10.1016/j.ijadhadh.2020.102599
El Mansouri, N. E., and Salvadó, J. 2007. Analytical methods for determining functional groups in various technical lignins. Industrial Crops and Products 26(2): 116–124. DOI: 10.1016/j.indcrop.2007.02.006
Mimini, V., Sykacek, E., Hashim, S. N. A., Holzweber, J., Hettegger, H., Fackler, K., Potthast, A., Mundigler, N., and Rosenau, T. 2019. Compatibility of Kraft Lignin, Organosolv Lignin and Lignosulfonate With PLA in 3D Printing. Journal of Wood Chemistry and Technology Taylor & Francis 39(1): 14–30. DOI: 10.1080/02773813.2018.1488875
Nacas, A. M., Ito, N. M., Sousa, R. R. De, Spinacé, M. A., and Dos Santos, D. J. 2017. Effects of NCO:OH ratio on the mechanical properties and chemical structure of Kraft lignin–based polyurethane adhesive. The Journal of Adhesion Taylor & Francis 93(1–2): 18–29. DOI: 10.1080/00218464.2016.1177793
Poletto, M., Ornaghi Jnior, H. L., and Zattera, A. J. 2015. Thermal Decomposition of Natural Fibers: Kinetics and Degradation Mechanisms. Reactions and Mechanisms in Thermal Analysis of Advanced Materials. DOI: 10.1002/9781119117711.ch21
Shahinur, S., Hasan, M., Ahsan, Q., and Haider, J. 2020. Effect of Chemical Treatment on Thermal Properties of Jute Fiber Used in Polymer Composites. Journal of Composites Science 4(3): 132. DOI: 10.3390/jcs4030132
Solihat, N. N., Sari, F. P., Falah, F., Ismayati, M., Lubis, M. A. R., Fatriasari, W., Santoso, E. B., and Syafii, W. 2021. Lignin as an Active Biomaterial: A Review. Jurnal Sylva Lestari 9(January): 1–22. DOI: http://dx.doi.org/10.23960/jsl191-22
Somdee, P., Lassú-Kuknyó, T., Kónya, C., Szabó, T., and Marossy, K. 2019. Thermal analysis of polyurethane elastomers matrix with different chain extender contents for thermal conductive application. Journal of Thermal Analysis and Calorimetry 138(2): 1003–1010. DOI: 10.1007/s10973-019-08183-y
Tejado, a., Peña, C., Labidi, J., Echeverria, J. M., and Mondragon, I. 2007. Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bioresource Technology 98: 1655–1663. DOI: 10.1016/j.biortech.2006.05.042
Toledano, a., García, a., Mondragon, I., and Labidi, J. 2010. Lignin separation and fractionation by ultrafiltration. Separation and Purification Technology 71: 38–43. DOI: 10.1016/j.seppur.2009.10.024
Velez, J., and Thies, M. C. 2013. Solvated Liquid-Lignin Fractions from a Kraft Black Liquor. BIORESOURCE TECHNOLOGY Elsevier Ltd (August). DOI: 10.1016/j.biortech.2013.08.097
Wang, Y.-Y., Wyman, C. E., Cai, C. M., and Ragauskas, A. J. 2019. Lignin-Based Polyurethanes from Unmodified Kraft Lignin Fractionated by Sequential Precipitation. ACS Applied Polymer Materials 1(7): 1672–1679. DOI: 10.1021/acsapm.9b00228
Wenger, J., Haas, V., and Stern, T. 2020. Why Can We Make Anything from Lignin Except Money? Towards a Broader Economic Perspective in Lignin Research. Current Forestry Reports Current Forestry Reports 6(4): 294–308. DOI: 10.1007/s40725-020-00126-3
Yuan, J. M., Feng, Y. R., and He, L. P. 2016. Effect of thermal treatment on properties of ramie fibers. Polymer Degradation and Stability Elsevier Ltd 133: 303–311. DOI: 10.1016/j.polymdegradstab.2016.09.012

Downloads

Published

28-05-2021

How to Cite

Aristri, M. A., Lubis, M. A. R., Laksana, R. P. B., Falah, F., Fatriasari, W., Ismayati, M., Wulandari, A. P., & Nurindah. (2021). Bio-Polyurethane Resins Derived from Liquid Fractions of Lignin for the Modification of Ramie Fibers. Jurnal Sylva Lestari, 9(2), 223–238. https://doi.org/10.23960/jsl29223-238

Issue

Section

Articles

Statistics

 Abstract views: 338 times
 PDF downloaded: 194 times

Metrics