The Removal of Cured Urea-Formaldehyde Adhesive towards Sustainable Medium Density Fiberboard Production: A Review

Authors

  • Muhammad Adly Rahandi Lubis (SCOPUS ID: 57192278476) Research Center for Biomaterials, Indonesian Institute of Sciences http://orcid.org/0000-0001-7860-3125
  • Sumit Yadav Manohar Department of Forest Products and Utilization, Forest College and Research Institute, Hyderabad, 500014, India
  • Raden Permana Budi Laksana
  • Widya Fatriasari Research Center for Biomaterials, Indonesian Institute of Sciences, Cibinong, 16911, Indonesia
  • Maya Ismayati Research Center for Biomaterials, Indonesian Institute of Sciences, Cibinong, 16911, Indonesia
  • Faizatul Falah Research Center for Biomaterials, Indonesian Institute of Sciences, Cibinong, 16911, Indonesia
  • Nissa Nurfajrin Solihat Research Center for Biomaterials, Indonesian Institute of Sciences, Cibinong, 16911, Indonesia
  • Fahriya Puspita Sari Research Center for Biomaterials, Indonesian Institute of Sciences, Cibinong, 16911, Indonesia
  • Wahyu Hidayat Department of Forestry, Faculty of Agriculture, University of Lampung. Jl. Sumantri Brojonegoro 1, Bandar Lampung, 35145, Indonesia https://orcid.org/0000-0002-6015-1623

DOI:

https://doi.org/10.23960/jsl1923-44

Abstract

Medium density fiberboard (MDF) is an engineered wood product that has density and specific gravity similar to solid wood, ranging from 600 to 800 kg/m3 of density and 0.6 to 0.8 of specific gravity. This makes MDF suitable to partially replace solid wood, particularly for interior application. Approximately over than 100 million m3 of MDF are produced in 2020, resulting in a large amount of waste MDF will be generated in the next 20 years. MDF is produced using urea-formaldehyde (UF) resins adhesive. UF resins adhesive is a poly-condensation product of urea and formaldehyde via an alkaline acid two-step reaction. Sustainable MDF production is required as the world is facing climate change and deforestation. Recycling is a way to support sustainable production in the engineered wood products manufacturing. Many attempts have been done to find ways to recycle waste MDF. The main problem is UF resins, which bond the MDF panel fibers. In order to re-manufacture the waste MDF into new recycled MDF, UF resins should be eliminated from the waste MDF before being used. The presence of UF resins in MDF can interfere with the utilization of the recycled fibers, whether it will be used as a raw material for new MDF or other composite products. This paper reviews the process of removal of cured UF resins from waste MDF panel by considering the hydrolytic stability of cured UF resins for MDF recycling, providing a comprehensive review of how cured UF resins can be removed from waste MDF and characterization of recycled fibers obtained from recycling prior to re-manufacturing of recycled MDF panel.

Keywords: hydrolysis, medium density fiberboard, resin, recycling, resin removal, urea-formaldehyde

Downloads

Download data is not yet available.

References

Abdullah, Z.A., and Park, B.D. 2009. Hydrolytic Stability of Cured UF Resins Modified by Additives. Journal of Applied Polymer Science 114: 1011–1017. DOI: 10.1002/app.30713
Antov, P., Jivkov, V., Savov, V., Simeonova, R., and Yavorov, N. 2020. Structural Application of Eco-Friendly Composites from Recycled Wood Fibres Bonded with Magnesium Lignosulfonate. Applied Sciences (Switzerland) 10(21): 1–12. DOI: 10.3390/app10217526
Antov, P., and Savov, V. 2019. Possibilities for Manufacturing Eco-friendly Medium Density Fibreboards from Recycled Fibres- A Review. 30th International Conference on Wood Science and Technology, ICWST 2019 and 70th Anniversary of Drvna industrija Journal: Implementation of Wood Science in Woodworking Sector, Proceedings (December): 18–24.
Bajpai, P. 2014. Refining of Recycled Fibres. Recycling and Deinking of Recovered Paper (2006): 181–197. DOI: 10.1016/B978-0-12-416998-2.00010-6
Benthien, J.T., Heldner, S., and Ohlmeyer, M. 2016. Investigation of the Interrelations between Defibration Conditions, Fiber Size and Medium-Density Fiberboard (MDF) Properties. European Journal of Wood and Wood Products 75: 215–232. DOI: 10.1007/s00107-016-1094-2
Bütün, F.Y., Mayer, A.K., Ostendorf, K., Gröne, O.E.Z., Krause, K.C., Schöpper, C., Mertens, O., Krause, A., and Mai, C. 2018. Recovering Fibres from Fibreboards for Wood Polymer Composites Production. International Wood Products Journal 9(2): 42–49. DOI: 10.1080/20426445.2018.1462965
Chiavarini, M., Bigatto, R., and Conti, N. 1978. Synthesis of Urea‐Formaldehyde Resins: NMR Studies on Reaction Mechanisms. Die Angewandte Makromolekulare Chemie 70(1): 49–58. DOI: 10.1002/apmc.1978.050700105
Chuang, I., and Gary, E. 1992. 13C CP/MAS NMR Study of the Structural Dependence of Urea-Formaldehyde Resins on Formaldehyde-to-Urea Molar Ratios at Different Urea Concentrations and pH Values. Macromolecules 25: 3204–3226.
Chuang, I., and Maciel, E. 1994. NMR Study of the Stabilities of Urea-Formaldehyde Resin Components Toward Hydrolytic Treatments. Journal of Applied Polymer Science 52: 1637–1651.
Conner, A. H. 1996. Urea-Formaldehyde Adhesive Resins. Polymeric Materials Encyclopedia 11: 8496–8501. DOI: 10.5860/choice.36-3664
Conroy, A., Halliwell, S., and Reynolds, T. 2006. Composite Recycling in the Construction Industry. Composites Part A: Applied Science and Manufacturing 37(8): 1216–1222. DOI: 10.1016/j.compositesa.2005.05.031
Dazmiri, M.K, Kiamahalleh, M.V., Kiamahalleh, M.V., Mansouri, H.R., and Moazami, V. 2018. Revealing the Impacts of Recycled Urea–Formaldehyde Wastes on the Physical–Mechanical Properties of MDF. European Journal of Wood and Wood Products 77: 293–299. DOI: 10.1007/s00107-018-1375-z
Deak, A. 2013. A New Life for Old Furniture. Pro Ligno 9(1841–4737): 849–854.
Dunky, M. 1998. Urea–Formaldehyde (UF) Adhesive Resins for Wood. International Journal of Adhesion and Adhesives 18(2): 95–107. DOI: 10.1016/S0143-7496(97)00054-7
Dutkiewicz, J. 1983. Hydrolytic Degradation of Cured Urea-Formaldehyde. Journal of Applied Polymer Science 28(11): 3313–3320.
Elias, R., and Bartlett, C. 2018. Briefing: Closing the Loop for Medium-Density Fibreboard. Proceedings of the Institution of Civil Engineers - Waste and Resource Management 171(2): 33–35. DOI: 10.1680/jwarm.17.00043
European Commission. 1997. Caring for Our Future. Action for Europe’s Environment. Office for Official Publications of the European Communities, Luxemburg, pp. 75–78.
FAO. 2019. Forest Products Annual Market Review, 2018-2019. UNECE. DOI: 10.1017/CBO9781107415324.004
Gonçalves, C., Paiva, N. T., Ferra, J.M., Martins, J., Magalhães, F., Barros-Timmons, A., and Carvalho, L. 2018. Utilization and Characterization of Amino Resins for the Production of Wood-Based Panels with Emphasis on Particleboards (PB) and Medium Density Fibreboards (MDF). A Review. Holzforschung 72(8): 653–671. DOI: 10.1515/hf-2017-0182
Gonçalves, C., Pereira, J., Paiva, N., Ferra, J., Martins, J., Magalhães, F., Barros-Timmons, A., and Carvalho, L. 2019. Impact of the Synthesis Procedure on Urea-Formaldehyde Resins Prepared by Alkaline–Acid Process. Industrial and Engineering Chemistry Research 58(14): 5665–5676. DOI: 10.1021/acs.iecr.8b06043
Grigsby, W.J., Carpenter, J.E.P., and Sargent, R. 2014. Investigating the Extent of Urea Formaldehyde Resin Cure in Medium Density Fiberboard : Resin Extractability and Fiber Effects. Journal of Wood Chemistry and Technology 34(3): 225–238. DOI: 10.1080/02773813.2013.861850
Grigsby, W.J., Carpenter, J.E.P., Thumm, A., Sargent, R., and Hati, N. 2015. Labile Extractable Urea-Formaldehyde Resin Components from Medium-Density Fiberboard. Forest Products Journal 65(1–2): 15–19. DOI: 10.13073/FPJ-D-14-00030
Grigsby, W.J., Thumm, A., and Kamke, F.A. 2005. Determination of Resin Distribution and Coverage in MDF by Fiber Staining. Wood and Fiber Science 37(2): 258–269.
Grigsby, W.J., and Thumm, A. 2012. Resin and wax distribution and mobility during medium density fibreboard manufacture. European Journal of Wood and Wood Products 70(1–3): 337–348. DOI: 10.1007/s00107-011-0560-0
Grigsby, W.J., Thumm, A., and Carpenter, J. 2012. Fundamentals of MDF Panel Dimensional Stability: Analysis of MDF High-Density Layers. Journal of Wood Chemistry and Technology 32(2): 149–164. DOI: 10.1080/02773813.2011.624667
Groom, L., Chi-Leung, S.O., Elder, T., and Pesacreta, T. 2005. Distribution and Penetration of Resin on Individual Wood Fibers. in: Appita Annual Conference 537–540.
Hamad, K., Kaseem, M., and Deri, F. 2013. Recycling of Waste from Polymer Materials: An Overview of the Recent Works. Polymer Degradation and Stability 98(12): 2801–2812. DOI: 10.1016/j.polymdegradstab.2013.09.025
Hong, M.K., Lubis, M.A.R., Park, B.D., Sohn, C.H., and Roh, J. 2020. Effects of Surface Laminate Type and Recycled Fiber Content on Properties of Three-Layer Medium Density Fiberboard. Wood Material Science and Engineering 15(3): 163–171. DOI: 10.1080/17480272.2018.1528479
Hwang, C., Hse, C., and Shupe, T.F. 2005. Effects of Recycled Fiber on the Properties of Fiberboard Panels. Forest Products Journal 55(11): 1–5.
Ibrahim, Z., Aziz, A.A., Ramli, R., Mokhtar, A., and Lee, S. 2013. Effect of Refining Parameters on Medium Density Fibreboard (MDF) Properties from Oil Palm Trunk. Open Journal of Composite Materials 3(4): 127–131. DOI: 10.4236/ojcm.2013.34013
Jada, S.S. 1988. The Structure of Urea-Formaldehyde Resins. Journal of Applied Polymer Science 35(6): 1573–1592. DOI: 10.1002/app.1988.070350614
Kamke, F.A., and Lee, J.N. 2007. Adhesive Penetration in Wood: A Review. Wood and Fiber Science 39(2): 205–220.
Kharazipour, A., and Kues, U. 2007. Recycling of Wood Composites and Solid Wood Products. in: Wood Production, Wood technology, and Biotechnological Impacts U. Kües, ed. Universitätsverlag Göttingen 509–534. DOI: 10.17875/gup2007-262
Kibrik, J., Steinhof, O., Scherr, G., Thiel, W.R., and Hasse, H. 2014. On-Line NMR Spectroscopic Reaction Kinetic Study of Urea − Formaldehyde Resin Synthesis. Industrial and Engineering Chemistry Research 53: 12602–12613. DOI: 10.1021/ie5001746
Kim, M. G. 1999. Examination of Selected Synthesis Parameters for Typical Wood Adhesive-Type Urea – Formaldehyde Resins by 13 C-NMR Spectroscopy. I. Journal of Polymer Science, Part A: Polymer Chemistry 37(7): 995–1007. DOI: 10.1002/(SICI)1099-0518(19990401)37:7<995::AID-POLA14>3.0.CO;2-6
Kim, M. G. 2000. Examination of Selected Synthesis Parameters for Typical Wood Adhesive-Type Urea – Formaldehyde Resins by 13 C NMR Spectroscopy. II. Journal of Applied Polymer Science 75: 1243–1254. DOI: 10.1002/(SICI)1097-4628(20000307)75:10<1243::AID-APP5>3.0.CO;2-F
Kim, M. G. 2001. Examination of Selected Synthesis Parameters for Typical Wood Adhesive-Type Urea – Formaldehyde Resins by 13 C NMR Spectroscopy. III. Journal of Applied Polymer Science 80: 2800–2814. DOI: 10.1002/(SICI)1097-4628(20000307)75:10<1243::AID-APP5>3.0.CO;2-F
Levendis, D., Pizzi1, A., and Ferg, E. 1992. The Correlation of Strength and Formaldehyde Emission with the Crystalline/Amorphous Structure of UF Resins. Holzforschung 46(3): 263–269. DOI: 10.1515/hfsg.1992.46.3.263
Loxton, C., Thumm, A., Grigsby, W.J., Adams, T.A., and Ede, R.M. 2003. Resin Distribution in Medium Density Fiberboard. Quantification of UF Resin Distribution on Blowline- and Dry-Blended MDF Fiber and Panels. Wood and Fiber Science 35(3): 370–380.
Lubis, M.A.R., Hidayat, W., Zaini, L.H., and Park, B.D. 2020. Effects of Hydrolysis on the Removal of Cured Urea- Formaldehyde Adhesive in Waste Medium-Density Fiberboard. Jurnal Sylva Lestari 8(1): 1–9. DOI: 10.23960/jsl181-9
Lubis, M.A.R., Hong, M.K., Park, B.D., and Lee, S.M. 2018a. Effects of Recycled Fiber Content on the Properties of Medium Density Fiberboard. European Journal of Wood and Wood Products 76(5): 1515–1526. DOI: 10.1007/s00107-018-1326-8
Lubis, M.A.R., Hong, M.K., and Park, B.D. 2018b. Hydrolytic Removal of Cured Urea–Formaldehyde Resins in Medium-Density Fiberboard for Recycling. Journal of Wood Chemistry and Technology 38(1): 1–14. DOI: 10.1080/02773813.2017.1316741
Lubis, M.A.R., and Park, B.D. 2020a. Influence of Initial Molar Ratios on the Performance of Low Molar Ratio Urea-Formaldehyde Resin Adhesives. Journal of the Korean Wood Science and Technology 48(2): 1–18. DOI: 10.5658/WOOD.2020.48.2.136
Lubis, M.A.R., and Park, B.D. 2020b. Enhancing the Performance of Low Molar Ratio Urea–Formaldehyde Resin Adhesives via In-Situ Modification with Intercalated Nanoclay. The Journal of Adhesion 1–20. DOI: 10.1080/00218464.2020.1753515
Lubis, M.A.R., and Park, B.D. 2018. Analysis of the Hydrolysates from Cured and Uncured Urea-Formaldehyde (UF) Resins with Two F/U Mole Ratios. Holzforschung 72(9): 759–768. DOI: 10.1515/hf-2018-0010
Lykidis, C., and Grigoriou, A. 2008. Hydrothermal Recycling of Waste and Performance of the Recycled Wooden Particleboards. Waste Management 28(1): 57–63. DOI: 10.1016/j.wasman.2006.11.016
Mantanis, G., Athanassiadou, E., Nakos, P., and Coutinho, A. 2004. A New Process for Recycling Waste Fiberboards. in: Proceedings of the XXXVIII International Wood Composites Symposium 119–122.
Mantanis, G.I., Athanassiadou, E.T., Barbu, M.C., and Wijnendaele, K. 2018. Adhesive Systems used in the European Particleboard, MDF and OSB Industries. Wood Material Science and Engineering 13(2): 104–116. DOI: 10.1080/17480272.2017.1396622
Moezzipour, B., Abdolkhani, A., Doost-Hoseini, K., Ahmad Ramazani, S.A., and Tarmian, A. 2018. Practical Properties and Formaldehyde Emission of Medium Density Fiberboards (MDFs) Recycled by Electrical Method. European Journal of Wood and Wood Products 76: 1287–1294. DOI: 10.1007/s00107-018-1291-2
Morris, J. 2017. Recycle, Bury, or Burn Wood Waste Biomass?: LCA Answer Depends on Carbon Accounting, Emissions Controls, Displaced Fuels, and Impact Costs. Journal of Industrial Ecology 21(4): 844–856. DOI: 10.1111/jiec.12469
Myers, G.E. 1984. How Mole Ratio of UF Resin Affects Formaldehyde Emission and Other Properties: A Literature Critique. Forest Products Journal 34(5): 34–41.
Myers, G.E. 1987. Resin Hydrolysis and Mechanisms of Formaldehyde Release from Bonded Wood Products. Forest Products Laboratory 119–156.
Myers, G.E., and Koutsky, J.A. 1990. Formaldehyde Liberation and Cure Behavior of Urea-Formaldehyde Resins. Holzforschung 44(2): 117–126. DOI: 10.1515/hfsg.1990.44.2.117
Nuryawan, A., and Park, B.D. 2016. Quantification of Hydrolytic Degradation of Cured Urea-Formaldehyde Resin Adhesives using Confocal Laser Scanning Microscopy. International Journal of Adhesion and Adhesives 74(1): 1–5. DOI: 10.1016/j.ijadhadh.2016.12.004
Nuryawan, A., Singh, A.P., Zanetti, M., Park, B.D., and Causin, V. 2017. Insights Into the Development of Crystallinity in Liquid Urea-Formaldehyde Resins. International Journal of Adhesion and Adhesives 72: 1–24. DOI: 10.1016/j.ijadhadh.2016.10.004
Ormondroyd, G.A., and Stefanowski, B. 2015. Fibreboards and Their Applications. Wood Composites Elsevier Ltd. DOI: 10.1016/B978-1-78242-454-3.00005-6
Paris, J.L., and Kamke, F.A. 2015. Quantitative Wood – Adhesive Penetration with X-Ray Computed Tomography. International Journal of Adhesion and Adhesives 61: 71–80. DOI: 10.1016/j.ijadhadh.2015.05.006
Park, B.D., Kang, E.C, and Park, J.Y. 2006. Effects of Formaldehyde to Urea Mole Ratio on Thermal Curing Behavior of Urea–Formaldehyde Resin and Properties of Particleboard. Journal of Applied Polymer Science 101(3): 1787–1792. DOI: 10.1002/app.23538
Park, B.D., and Jeong, H. 2011a. Hydrolytic Stability and Crystallinity of Cured Urea–Formaldehyde Resin Adhesives with Different Formaldehyde/Urea Mole Ratios. International Journal of Adhesion and Adhesives 31(6): 524–529. DOI: 10.1016/j.ijadhadh.2011.05.001
Park, B.D., and Causin, V. 2013. Crystallinity and Domain Size of Cured Urea-Formaldehyde Resin Adhesives with Different Formaldehyde/Urea Mole Ratios. European Polymer Journal 49(2): 532–537. DOI: 10.1016/j.eurpolymj.2012.10.029
Park, B.D., and Jeong, H. 2011b. Influence of Hydrolytic Degradation on the Morphology of Cured Urea-Formaldehyde Resins of Different Formaldehyde/Urea Mole Ratios. Journal of the Korean Wood Science and Technology 39(2): 179–186. DOI: 10.5658/WOOD.2011.39.2.179
Park, B.D., and Kim, J. 2008. Dynamic Mechanical Analysis of Urea-Formaldehyde Resin Adhesives with Different Formaldehyde-to-Urea Molar Ratios. Journal of Applied Physics 108: 2045–2051. DOI: 10.1002/app.27595
Pérez, M. 2016. Microbial Decontamination of Urea Formaldehyde Bonded Medium Density Fiberboard. Theses. Saint Mary’s University pp. 91.
Pizzi, A., and Mittal, K.L. 2003. Handbook of Adhesive Technology-Second Edition. Taylor and Francis Group, LLC, Marcel Dekker, Inc.
Pizzi, A., and Valenzuela, J. 1994. Theory and Practice of the Preparation of Low Formaldehyde Emission UF Adhesives. Holzforschung 48(3): 254–261. DOI: 10.1515/hfsg.1994.48.3.254
Ringena, O., Janzon, R., Pfizenmayer, G., Schulte, M., and Lehnen, R. 2006. Estimating the Hydrolytic Durability of Cured Wood Adhesives by Measuring Formaldehyde Liberation and Structural Stability. Holz als Roh - und Werkstoff 64(4): 321–326. DOI: 10.1007/s00107-005-0087-3
Rivela, B., Moreira, M.T., and Feijoo, G. 2007. Life Cycle Inventory of Medium Density Fibreboard. The International Journal of Life Cycle Assessment 12(3): 143–150. DOI: 10.1007/s11367-006-0290-4
River, B.H., Ebewele, R.O., and Myers, G.E. 1994. Failure Mechanisms in Wood Joints Bonded with Urea-Formaldehyde Adhesives. Holz als Roh- und Werkstoff 52(3): 179–184. DOI: 10.1007/BF02615219
Roffael, E., Behn, C., Schneider, T., and Krug, D. 2016. Bonding of Recycled Fibres with Urea-Formaldehyde Resins. International Wood Products Journal 7(1): 36–45. DOI: 10.1080/20426445.2015.1131918
Roffael, E., and Hüster, H.G. 2012. Complex Chemical Interactions on Thermo Hydrolytic Degradation of Urea Formaldehyde Resins (UF-resins) in Recycling UF-Bonded Boards. European Journal of Wood and Wood Products 70(4): 401–405. DOI: 10.1007/s00107-011-0574-7
Schulte, M., and Frühwald, A. 1996. Shear Modulus, Internal Bond and Density Profile of Medium Density Fibre Board (MDF). Holz als Roh-und Werkstoff 54(1): 49–55. DOI: 10.1007/s001070050132
Singh, A.P., Causin, V., Nuryawan, A., and Park, B.D. 2014. Morphological, Chemical and Crystalline Features of Urea – Formaldehyde Resin Cured in Contact With Wood. European Polymer Journal 56: 185–193. DOI: 10.1016/j.eurpolymj.2014.04.014
Singh, A.P., Nuryawan, A., Park, B.D., and Lee, K.H. 2015. Urea-Formaldehyde Resin Penetration into Pinus radiata Tracheid Walls Assessed by TEM-EDXS. Holzforschung 69(3): 7–10. DOI: 10.1515/hf-2014-0103
Smythe, L.E. 1951. Urea-Formaldehyde Kinetic Studies. I. Variation in Urea Solutions. Journal of the American Chemical Society 73(6): 2735–2738. DOI: 10.1021/ja01150a089
Smythe, L.E. 1952. Urea-Formaldehyde Kinetic Studies. II. Factors Influencing Initial Reaction. Journal of the American Chemical Society 74(11): 2713–2715. DOI: 10.1021/ja01131a006
Steinhof, O., Kibrik, É.J., Scherr, G., and Hasse, H. 2014. Quantitative and Qualitative 1H, 13C, and 15N NMR Spectroscopic Investigation of the Urea-Formaldehyde Resin Synthesis. Magnetic Resonance in Chemistry : MRC 52(4): 138–62. DOI: 10.1002/mrc.4044
Suchsland, O., and Woodson, G. E. 1986. Fiberboard manufacturing practices in the United States. Forest Products Society.
Taheri, F., Enayati, A.A., Pizzi, A., Lemonon, J., and Layeghi, M. 2016. Evaluation of UF Resin Content in MDF Boards after Hot-Pressing by Kjeldahl Method. European Journal of Wood and Wood Products 74: 237–242. DOI: 10.1007/s00107-015-1003-0
TAPPI. 1997. Organic nitrogen in paper and paperboard. T 418 cm-97.
TAPPI. 2001. Analysis of formaldehyde in aqueous solutions and of free formaldehyde in resins. T 600 cm-01.
TAPPI. 2002. Hydrogen ion concentration (pH) of paper extracts (hot extraction method). T 435 om-02
Wan, H., Wang, X.M., Barry, A., and Shen, J. 2014. Recycling Wood Composite Panels: Characterizing Recycled Materials. BioResources 9(4): 7554–7565. DOI: 10.15376/biores.9.4.7554-7565
Wang, H., Cao, M., Li, T., Yang, L., Duan, Z., Zhou, X., and Du, G. 2018. Characterization of the Low Molar Ratio Urea-Formaldehyde Resin with 13C NMR and ESI-MS: Negative Effects of the Post-Added Urea on the Urea-Formaldehyde Polymers. Polymers 10(6): 602. DOI: 10.3390/polym10060602
Wibowo, E.S., Lubis, M.A.R., Park, B.D., Kim, J.S., and Causin, V. 2020. Converting crystalline Thermosetting Urea–Formaldehyde Resins to Amorphous Polymer using Modified Nanoclay. Journal of Industrial and Engineering Chemistry 87: 78–89. DOI: 10.1016/j.jiec.2020.03.014
Xing, C., Riedl, B., Cloutier, A., and He, G. 2004. The Effect of Urea-Formaldehyde Resin Pre-Cure on the Internal Bond of Medium Density Fiberboard. Holz als Roh- und Werkstoff 62: 439–444. DOI: 10.1007/s00107-004-0512-z
Yadav, S.M., Lubis, M.A.R., Wibowo, E.S., and Park, B.D. 2020. Effects of Nanoclay Modification with Transition Metal Ion on the Performance of Urea–Formaldehyde Resin Adhesives. Polymer Bulletin DOI: 10.1007/s00289-020-03214-3
Zeng, Q., Lu, Q., Zhou, Y., Chen, N., Rao, J., and Fan, M. 2018. Circular Development of Recycled Natural Fibers from Medium Density Fiberboard Wastes. Journal of Cleaner Production 202: 456–464. DOI: 10.1016/j.jclepro.2018.08.166

Downloads

Published

29-01-2021

How to Cite

Lubis, M. A. R., Manohar, S. Y., Laksana, R. P. B., Fatriasari, W., Ismayati, M., Falah, F., Solihat, N. N., Sari, F. P., & Hidayat, W. (2021). The Removal of Cured Urea-Formaldehyde Adhesive towards Sustainable Medium Density Fiberboard Production: A Review. Jurnal Sylva Lestari, 9(1), 23–44. https://doi.org/10.23960/jsl1923-44

Issue

Section

Articles

Statistics

 Abstract views: 1293 times
 PDF downloaded: 893 times

Metrics