Antimicrobial Activity of Ten Extractives from Toba, North Sumatra and Mt. Merapi National Park Regions, Indonesia
DOI:
https://doi.org/10.23960/jsl1976-85Abstract
Investigating beneficial chemical compounds of plant extracts is one of the ways to prevent biodiversity loss. This study evaluated the antimicrobial activity of indigenous plant extracts from Toba, North Sumatra, and Mt. Merapi National Park regions against Escherichia coli, Bacillus subtilis, Salmonella typhi, Staphylococcus aureus, Candida albicans, and Candida tropicalis by calculating the zone of microbial growth inhibition. Among the plant extracts, T5 that identified asToona sinensisshowed the highestmicrobial inhibitionto the growth of C. albicans, B. subtilis, S. typhi, and E. coli with the diameter growth of approximately 2.00, 1.80, 1.33, and 1.33 cm, respectively. Based on those results, T. sinensis was thensubsequently fractionated using n-hexane, ethyl acetate, and methanol, respectively.The resulted fractions also were evaluated for antimicrobial bioassay. All fractions have shown activity in inhibiting the growth of the microbes at 1% concentration. However, each fraction showedgrowth inhibition against certain microbes. The n-hexane fraction showed the greatest inhibitory activity for E. coli and S. typhi; ethyl acetate fraction for B. subtilis and C. albicans; and methanol fraction for E. coli and S. typhi. The results revealed that T. sinensis plant extract has great potential asan antimicrobial agent. Further investigation is needed to observe the mode of antimicrobial action of fractionated crude extracts of T. Sinensis. The exploring potency of Indonesian biodiversity opened up a new way for the utilization of plants for economic development and conservation.
Keywords: antimicrobial plants, indigenous knowledge, Toba-North Sumatra, Mt. Merapi
Downloads
References
Attanayake, A., Jayatilaka, K., and Malkanthi, B. 2016. Total Flavonoid Content, Total Antioxidant Activities, and Phytochemical Constituents of Selected Medicinal Plant Extracts used for Oxidative Stress-Related Chronic Diseases in Sri Lanka. The Journal of Medicinal Plants Studies 26(46): 26–29.
Barbieri, R., Coppo, E., Marchese, A., Daglia, M., Sobarzo-Sánchez, E., Nabavi, S.F., and Nabavi, S.M. 2017. Phytochemicals for Human Disease: An Update on plant-Derived Compounds Antibacterial Activity. Microbiological Research 196: 44–68. DOI: 10.1016/j.micres.2016.12.003
Bhatt, A. 2016. Phytopharmaceuticals: A new Drug Class Regulated in India. Perspectives in Clinical Research 7(2): 59–61. DOI: 10.4103/2229-3485.179435
Deo, P., Hewawasam, E., Karakoulakis, A., Claudie, D.J., Nelson, R., Simpson, B.S., Smith, N.M., and Semple, S.J. 2016. In vitro Inhibitory Activities of Selected Australian Medicinal Plant Extracts against Protein Glycation, Angiotensin Converting Enzyme (ACE) and Digestive Enzymes Linked to Type II Diabetes. BMC Complementary Medicine and Therapies 16(1): 435. DOI: 10.1186/s12906-016-1421-5
Giordani, C., Simonetti, G., Natsagdorj, D., Choijamts, G., Ghirga, F., Calcaterra, A., Quaglio, D., Angelis, G.D., Toniolo, C., and Pasqua, G. 2020. Antifungal Activity of Mongolian medicinal Plant Extracts. Natural Product Research 34(4): 449–455. DOI: 10.1080/14786419.2019.1610960
Górniak, I., Bartoszewski, R., and Króliczewski, J. 2019. Comprehensive Review of Antimicrobial Activities of Plant Flavonoids. Phytochemistry Reviews 18(1): 241–272. DOI: 10.1007/s11101-018-9591-z
Ismayati, M., Nakagawa-izumi, A., and Ohi, H. 2017. Structural Elucidation of Condensed Tannin from the Bark Waste of Acacia crassicarpa Plantation Wood in Indonesia. Journal of Wood Science 63(4): 350-359.
Ismayati, M., Zulfiana, D., Tarmadi, D., Lestari, A.S., Krishanti, N.P.R.A., Himmi, S.K., and Yusuf, S. 2019. Biological Control of Wood Destroying Organism Using Plant Extracts Collected from Mt. Merapi National Park, Indonesia. Biosaintifika: Journal of Biology & Biology Education 11(3): 360-368.
Mahfuzul Hoque, M.D., Bari, M.L., Inatsu, Y., Juneja, V.K., and Kawamoto, S. 2007. Antibacterial Activity of Guava (Psidium guajava L.) and Neem (Azadirachta indica A. Juss.) Extracts Against Foodborne Pathogens and Spoilage Bacteria. Foodborne Pathogens and Disease 4(4): 481–488. DOI: 10.1089/fpd.2007.0040
Meisyara, D., Krishanti, N.P.R.A., Zulfitri, A., Lestari, A.S., Tarmadi, D., Himmi, S.K., and Ismayati, M. 2019. Biological Activity of Local Plant Extracts from Toba Region as Insecticide. IOP Conference Series: Earth and Environmental Science 374(1): 012006.
Murningsih, T. 2015. Effect of Partition Solvents on Total Phenolic Contents and Antioxidant Activities of Toona sinensis Bark Extract. Berita Biologi 14(2): 169-175.
Nasi, R., Dennis, R., Meijaard, E., Applegate, G., and Moore, P. 2002. Forest Fire and Biological Diversity. Unasylva 209: 53.
Nzogong, R.T., Ndjateu, F.S.T., Ekom, S.E., Fosso, J.A.M., Awouafack, M.D., Tene, M., Tane, P., Morita, H., Choudhary, M.I., and Tamokou, J.D. 2018. Antimicrobial and antioxidant Activities of Triterpenoid and Phenolic Derivatives from Two Cameroonian Melastomataceae Plants: Dissotis senegambiensis and Amphiblemma monticola. BMC Complement Altern Med 18(1): 159. DOI: 10.1186/s12906-018-2229-2
Ogbole, O.O., Segun, P.A., and Fasinu, P.S. 2018. Antimicrobial and Antiprotozoal Activities of Twenty-Four Nigerian Medicinal Plant Extracts. South African Journal of Botany 117:240–246. DOI: 10.1016/j.sajb.2018.05.028
Oso, B., and Ogunnusi, T. 2017. Antibacterial Activity of Methanolic Extracts of Euphorbia heterophylla and Tithonia diversifolia against Some Microorganisms. European Journal of Medicinal Plants 20(3): 1–8. DOI: 10.9734/ejmp/2017/28568
Peng, W., Liu, Y., Hu, M., Zhang, M., Yang, J., Liang, F., and Wu, C. 2019. Toona sinensis: A Comprehensive Review on Its Traditional Usages, Phytochemisty, Pharmacology and Toxicology. Revista Brasileira de Farmacognosia 29(1): 111-124.
Qadir, M.I., Manzoor, A., and Akash, M.S.H. 2018. Potential Role of Medicinal Plants for Anti-Atherosclerosis Activity. Bangladesh Journal of Pharmacology 13(1): 59–66. DOI: 10.3329/bjp.v13i1.33478
Sammar, M., Abu‑Farich, B., Rayan, I., Falah, M., and Rayan, A. 2019. Correlation between Cytotoxicity in cancer Cells and free Radical‑Scavenging Activity: In Vitro Evaluation of 57 Medicinal and Edible Plant Extracts. Oncology Letters 18(6): 6563–6571. DOI: 10.3892/ol.2019.11054
Scalbert, A. 1991. Antimicrobial Properties of Tannins. Phytochemistry 30(12): 3875–3883. DOI: 10.1016/0031-9422(91)83426-L
Segun, A.A., Samuel, F.O., and Aminat, A.T. 2015. Assessment of Antibacterial Activity of Essential Oil Extracted from Leaves of Thaumatococcus danielli (Benn.) Benth. in light of Its Inhibitory Impact on Extracellular Protease of Shigella Dysenteriae. International Journal of Biochemistry Research and Review 5(1): 9.
Taleb Contini, S., Salvador, M., Watanabe, E., Ito, I., and Oliveira, D. 2003. Antimicrobial Activity of Flavonoids and Steroids Isolated From Two Chromolaena Species. The Brazilian Journal of Pharmaceutical Sciences 39. DOI: 10.1590/S1516-93322003000400007
Trenberth, K.E., Dai, A., van der Schrier, G., Jones, P.D., Barichivich, J., Briffa, K.R., and Sheffield, J. 2014. Global Warming and Changes in Drought. Nature Climate Change 4(1): 17–22. DOI: 10.1038/nclimate2067
Wu, J. G., Peng, W., Yi, J., Wu, Y. B., Chen, T. Q., Wong, K. H., and Wu, J. Z. 2014. Chemical Composition, Antimicrobial Activity against Staphylococcus aureus and a Pro-Apoptotic Effect in SGC-7901 of the Essential Oil from Toona sinensis (A. Juss.) Roem. Leaves. Journal of Ethnopharmacology 154(1): 198-205. DOI: 10.1016/j.jep.2014.04.002
Downloads
Published
How to Cite
Issue
Section
Statistics
PDF downloaded: 234 times
Metrics
License
Copyright (c) 2021 Maya Ismayati, Deni Zulfiana, Dita Meisyara, Khoirul Himmi Setiawan, Didi Tarmadi, Titik Kartika, Apriwi Zulfitri
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 Licence that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).