Lignin as an Active Biomaterial: A Review


  • Nissa Nurfajrin Solihat Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Cibinong 16911, Indonesia
  • Fahriya Puspita Sari
  • Faizatul Falah
  • Maya Ismayati
  • Muhammad Adly Rahandi Lubis
  • Widya Fatriasari
  • Eko Budi Santoso
  • Wasrin Syafii



Lignin is the second most naturally abundant biopolymer in the cell wall of lignocellulosic compound (15-35%) after cellulose. Lignin can be generated in massive amounts as by-products in biorefineries and pulp and paper industries through differing processes. Most lignin is utilized as generating energy and has always been treated as waste. Due to the high amount of phenolic compounds in lignin, it is considered as a potential material for various polymers, building blocks, and biomaterials production. Even though lignin can be utilized in the form of isolated lignin directly, the modification of lignin can increase the wide range of lignin applications. Lignin-based copolymers and modified lignin show better miscibility with another polymeric matrix, outstanding to the enhanced performance of such lignin-based polymer composites. This article summarizes the properly updated information of lignin's potential applications, such as bio-surfactant, active packaging, antimicrobial agent, and supercapacitor.

Keywords: active packaging, antimicrobial agent, bio-surfactant, lignin, supercapacitor


Download data is not yet available.

Author Biography

Nissa Nurfajrin Solihat, Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Cibinong 16911, Indonesia

Research Center for Biomaterials


Aadil, K.R., Barapatre, A., and Jha, H. 2016a. Synthesis and characterization of Acacia lignin-gelatin film for its possible application in food packaging. Bioresources and Bioprocessing, 3(1). DOI: 10.1186/s40643-016-0103-y
Aadil, K. R., Prajapati, D., and Jha, H. 2016b. Improvement of physcio-chemical and functional properties of alginate film by Acacia lignin. Food Packaging and Shelf Life, 10: 25–33. DOI: 10.1016/j.fpsl.2016.09.002
Abdollahia, M., Pourmahdia, M., and Nasirib, A.R. 2018. Synthesis and characterization of lignosulfonate acrylamide graft copolymers and their application in environmentally friendly water- based drilling fluid. Journal of Petroleum Science and Engineering 171: 484-494. DOI: 10.1016/j.petrol.2018.07.065
Afrin, T., Tsuzuki, T., Kanwar, R.K., and Wang, X. 2012. The origin of the antibacterial property of bamboo. Journal of the Textile Institute 103(8): 844-849. DOI: 10.1080/00405000.2011.614742
Albadarin, A.B., Collins, M.N., Naushad, M., Shirazian, S., Walker, G., and Mangwandi, C. 2017. Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chemical Engineering Journal 307: 264–272. DOI: 10.1016/j.cej.2016.08.089
Alwadani, N., and Fatehi, P. 2018. Synthetic and lignin-based surfactants: Challenges and opportunities. Carbon Resources Conversion 1(2): 126-138. DOI: 10.1016/j.crcon.2018.07.006
Alzagameem, A., Klein, S.E., Bergs, M., Do, X.T., Korte, I., Dohlen, S., Huwe, C., Kreyenschmidt, J., Kamm, B., Larkins, M., and Schulze, M. 2019. Antimicrobial Activity of Lignin and Lignin-Derived Cellulose and Chitosan Composites Against Selected Pathogenic and Spoilage Microorganisms. Polymers 11(4). DOI: 10.3390/polym11040670
Aro, T., and Fatehi, P. 2017. Production and Application of Lignosulfonates and Sulfonated Lignin. ChemSusChem 10(9): 1861-1877. DOI: 10.1002/cssc.201700082
Borenstein, A., Hanna, O., Attias, R., Luski, S., Brousse, T., and Aurbach, D. 2017. Carbon-based composite materials for supercapacitor electrodes: A review. Journal of Materials Chemistry A 5(25), 12653–12672. DOI: 10.1039/c7ta00863e
Cai, C., Zhan, X., Zeng, M., Lou, H., Pang, Y., Yang, J., Yang, D., and Qiu, X. 2017. Using recyclable pH-responsive lignin amphoteric surfactant to enhance the enzymatic hydrolysis of lignocelluloses. Green Chemistry 19(22): 5479-5487. DOI: 10.1039/c7gc02571h
Cazacu, G., Capraru, M., and Popa, V.I. 2013. Advances Concerning Lignin Utilization in New Materials. In Advances in Natural Polymers (pp. 255-312). Springer: Berlin.
Chan, J.M.W., Bauer, S., Sorek, H., Sreekumar, S., Wang, K., and Toste, F.D. 2013. Studies on the Vanadium-Catalyzed Nonoxidative Depolymerization of Miscanthus giganteus-Derived Lignin. ACS Catalysis 3(6): 1369-1377. DOI: 10.1021/cs400333q
Chaubey, A., Aadil, K.R., and Jha, H. 2020. Synthesis and characterization of lignin-poly lactic acid film as active food packaging material. Materials Technology 00(00): 1–9. DOI: 10.1080/10667857.2020.1782060
Chen, C., Zhu, M., Li, M., Fan, Y., and Sun, R.C. 2016. Epoxidation and etherification of alkaline lignin to prepare water-soluble derivatives and its performance in improvement of enzymatic hydrolysis efficiency. Biotechnol Biofuels 9: 87. DOI: 10.1186/s13068-016-0499-9
Chio, C., Sain, M., and Qin, W. 2019. Lignin utilization: A review of lignin depolymerization from various aspects. Renewable and Sustainable Energy Reviews 107: 232-249. DOI: 10.1016/j.rser.2019.03.008
Crouvisier-Urion, K., Regina Da Silva Farias, F., Arunatat, S., Griffin, D., Gerometta, M., Rocca-Smith, J. R., Weber, G., Sok, N., and Karbowiak, T. 2019. Functionalization of chitosan with lignin to produce active materials by waste valorization. Green Chemistry 21(17): 4633–4641. DOI: 10.1039/c9gc01372e
Diblan, S., and Kaya, S. 2018. Antimicrobial Used in Active Packaging Film. Food and Health 4(1): 63-79. DOI: 10.3153/JFHS18007
Domenek, S., Louaifi, A., Guinault, A., and Baumberger, S. 2013. Potential of Lignins as Antioxidant Additive in Active Biodegradable Packaging Materials. Journal of Polymers and the Environment 21(3): 692–701. DOI: 10.1007/s10924-013-0570-6
Dong, X., Dong, M.I, Lu, Y., Turley, A., Jin, T., and Wu, C. 2011. Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production. Industrial Crops and Products 34(3): 1629-1634. DOI: 10.1016/j.indcrop.2011.06.002
Duval, A., and Lawoko, M. 2014. A review on lignin-based polymeric, micro- and nano-structured materials. Reactive and Functional Polymers 85: 78-96. DOI: 10.1016/j.reactfunctpolym.2014.09.017
El-Nemr, K.F., Mohamed, H.R., Ali, M.A., Fathy, R.M., and Dhmees, A.S. 2019. Polyvinyl alcohol/gelatin irradiated blends filled by lignin as green filler for antimicrobial packaging materials. International Journal of Environmental Analytical Chemistry 00(00): 1–25. DOI: 10.1080/03067319.2019.1657108
Espinoza-Acosta, J.L., Torres-Chávez, P. I., Ramírez-Wong, B., López-Saiz, C.M., & Leyva, B.M. 2016. Antioxidant, Antimicrobial, and Antimutagenic Properties of Technical Lignins and Their Applications. BioResoures 11(2): 5452-5481.
Fakruddin, M. 2012. Biosurfactant: Production and Application. Journal of Petroleum & Environmental Biotechnology 03(04). DOI: 10.4172/2157-7463.1000124
Faraji, S., and Ani, F.N. (2015). The development supercapacitor from activated carbon by electroless plating - A review. Renewable and Sustainable Energy Reviews 42: 823–834. DOI: 10.1016/j.rser.2014.10.068
Faravelli, T., Frassoldati, A., Migliavacca, G., and Ranzi, E. 2010. Detailed kinetic modeling of the thermal degradation of lignins. Biomass and Bioenergy 34(3): 290–301. DOI: 10.1016/j.biombioe.2009.10.018
Fatriasari, W., Hamzah, F.N., Pratomo, B.I. , Fajriutami, T., Ermawar, R.A. , Falah, F., Ghozali, M., Iswanto, A.H., Hermiati, E., and Winarni, I. 2020. Optimizing the Synthesis of Lignin Derivatives from Acacia mangium to Improve the Enzymatic Hydrolysis of Kraft Pulp Sorghum Bagasse. Int J Renew Energy Dev (IJRED) 9(2): 227-235. DOI: 10.14710/ijred.9.2.227-235
Fatriasari, W., Nugroho Adi, D.T., Laksana, R.P.B., Fajriutami, T., Raniya, R., Ghozali, M., and Hermiati, E. 2018. The effect of amphipilic lignin derivatives addition on enzymatic hydrolysis performance of kraft pulp from sorghum bagasse. in IOP Conference Series: Earth Environ Sci, Jakarta, Indonesia. DOI: 10.1088/1755-1315/141/1/012005
Fatriasari, W., Supriyanto, and Iswanto, A.H. 2015. The Kraft Pulp And Paper Properties of Sweet Sorghum Bagasse (Sorghum bicolor L Moench). J Eng Tech Sci 47(2): 149-159. DOI: 10.5614/j.eng.technol.sci.2015.47.2.4
Faustino, H., Gil, N., Baptista, C., and Duarte, A.P. 2010. Antioxidant Activity of Lignin Phenolic Compounds Extracted from Kraft and Sulphite Black Liquors. Molecules 9308–9322. DOI: 10.3390/molecules15129308
Fu, K., Yue, Q., Gao, B., Sun, Y., and Zhu, L. 2013. Preparation , characterization and application of lignin-based activated carbon from black liquor lignin by steam activation. Chemical Engineering Journal 228: 1074–1082. DOI: 10.1016/j.cej.2013.05.028
Gabov, K., Oja, T., Deguchi, T., Fallarero, A., and Fardim, P. 2016. Preparation, characterization and antimicrobial application of hybrid cellulose-lignin beads. Cellulose 24(2): 641-658. DOI: 10.1007/s10570-016-1172-y
Gaikwad, K.K., Singh, S., and Lee, Y. S. (2018). Oxygen scavenging films in food packaging. Environmental Chemistry Letters, 16(2): 523–538. DOI: 10.1007/s10311-018-0705-z
Gao, Y., Yue, Q., Gao, B., Sun, Y., Wang, W., Li, Q., and Wang, Y. 2013. Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni (II) adsorption. Chemical Engineering Journal 217, 345–353. DOI: 10.1016/j.cej.2012.09.038
Gargulak, J.D., and Lebo, S.E. 1999. Commercial Use of Lignin-Based Materials. In Lignin: Historical, Biological, and Materials Perspectives (pp. 304-320). ACS: Washington.
González, A., Goikolea, E., Barrena, J.A., and Mysyk, R. 2016. Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews 58: 1189–1206. DOI: 10.1016/j.rser.2015.12.249
Gordobil, O., Egüés, I., Llano-Ponte, R., and Labidi, J. 2014. Physicochemical properties of PLA lignin blends. Polymer Degradation and Stability 108. DOI: 10.1016/j.polymdegradstab.2014.01.002
Gordobil, O., Herrera, R., Yahyaoui, M., Ä°lk, S., Kaya, M., and Labidi, J. 2018. Potential use of kraft and organosolv lignins as a natural additive for healthcare products. RSC Advances 8(43): 24525-24533. DOI: 10.1039/c8ra02255k
Guo, Y., Tian, D., Shen, F., Yang, G., Long, L., He, J., Song, C., Zhang, J., Zhu, Y., Huang, C., and Deng, S. 2019. Transparent cellulose/technical lignin composite films for advanced packaging. Polymers 11(9): 1–11. DOI: 10.3390/polym11091455
Hao, W., and Bjo, F. 2017. High-Performance Magnetic Activated Carbon from Solid Waste from Lignin Conversion Processes. 1. Their Use As Adsorbents for CO2. ACS Sustainable Chem. Eng. 5(4): 3087–3095. DOI: 10.1021/acssuschemeng.6b02795
Hermiati, E., Risanto, L., Lubis, M.A.R., Laksana, R.P.B., Dewi, A.R. 2017. Chemical characterization of lignin from kraft pulping black liquor of Acacia mangium. In: Int Symp on Appl Chem (ISAC). AIP Conf. Proc. 020001–020007. DOI:10.1063/1.4973132
Hu, S., and Hsieh, Y.L. 2017. Lignin derived activated carbon particulates as an electric supercapacitor: Carbonization and activation on porous structures and microstructures. RSC Advances 7(48): 30459–30468. DOI: 10.1039/c7ra00103g
Huang, C., Ma, J., Zhang, W., Huang, G., and Yong, Q. 2018. Preparation of Lignosulfonates from Biorefinery Lignins by Sulfomethylation and Their Application as a Water Reducer for Concrete. Polymers (Basel) 10(8). DOI: 10.3390/polym10080841
Huang, J., Fu, S., and Gan, L. 2019. Chapter 4 - Lignin Chemicals and Their Applications. In Jin Huang, Shiyu Fu, & Lin Gan (Eds.), Lignin Chemistry and Applications (pp. 79-134). Amsterdam, The Netherlands: Elsevier.
Jiao, Y., Xu, Z., Qiao, W., and Li, Z. 2007. Research Interfacial Properties of the Novel Lignosulfonates. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 29(15): 1425-1432. DOI: 10.1080/00908310600710699
Johansson, K., Gillgren, T., Winestrand, S., Järnström, L., and Jönsson, L. J. 2014. Comparison of lignin derivatives as substrates for laccase-catalyzed scavenging of oxygen in coatings and films. 1–10.
Johansson, K., Winestrand, S., Johansson, C., Järnström, L., and Jönsson, L. J. 2012. Oxygen-scavenging coatings and films based on lignosulfonates and laccase. Journal of Biotechnology 161(1): 14–18. DOI: 10.1016/j.jbiotec.2012.06.004
Jung, H.G., and Fahey, G.C. 1983. Nutritional implications of phenolic monomers and lignin: a review. Journal of animal science 57(1): 206-219.
Kai, D., Tan, M.J., Chee, P.L., Chua, Y.K., Yap, Y.L., and Loh, X.J. 2016. Towards lignin-based functional materials in a sustainable world. Green Chemistry 18(5): 1175-1200. DOI: 10.1039/c5gc02616d
Kelley, J.R. 1983. U.S Patent No. US4322301A. Georgia Pacific Corp.
Kinyanjui, T., Artz, W.E., and Mahungu, S. 2003. EMULSIFIERS: Organic Emulsifiers. In Benjamin Caballero (Ed.), Encyclopedia of Food Sciences and Nutrition (Second Edition) (pp. 2070-2077). Oxford: Academic Press.
Klein, A., Rumpf, K., Kreyenschmidt, and Schulze. 2019. Antimicrobial Activity of Lignin-Derived Polyurethane Coatings Prepared from Unmodified and Demethylated Lignins. Coatings 9(8). DOI: 10.3390/coatings9080494
Konduri, M.K.R., and Fatehi, P. 2018. Designing anionic lignin based dispersant for kaolin suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 538: 639-650. DOI: 10.1016/j.colsurfa.2017.11.011
Li, H., and Peng, L. 2015. Antimicrobial and antioxidant surface modification of cellulose fibers using layer-by-layer deposition of chitosan and lignosulfonates. Carbohydrate Polymers, 124, 35–42. DOI: 10.1016/j.carbpol.2015.01.071
Liu, Z., Lu, X., An, L., and Xu, C. 2016. A novel cationic lignin-amine emulsifier with high performance reinforced via phenolation and Mannich reactions. BioResourources 11(3): 6438-6451.
Liu, Z., Zhao, L., Cao, S., Wang, S., and Li, P. 2013. Preparation and Evaluation of a Novel Cationic Amphiphilic Lignin Derivative with High Surface Activity. BioResources 8(4): 6111-6120.
Lou, H., He, X., Cai, C., Lan, T., Pang, Y., Zhou, H., and Qiu, X. 2019. Enhancement and Mechanism of a Lignin Amphoteric Surfactant on the Production of Cellulosic Ethanol from a High-Solid Corncob Residue. J Agric Food Chem 67(22): 6248-6256. DOI: 10.1021/acs.jafc.9b01208
Ma, Z., Yang, Y., Wu, Y., Xu, J., Peng, H., Liu, X., Zhang, W., and Wang, S. 2019. In-depth comparison of the physicochemical characteristics of bio-char derived from biomass pseudo components: Hemicellulose, cellulose, and lignin. Journal of Analytical and Applied Pyrolysis, 140(December 2018), 195–204. DOI: 10.1016/j.jaap.2019.03.015
Ma’ruf, A., Pramudono, B., and Aryanti, N. 2018. Synthesis of Natural Surfactant of Sodium Lignosulfonate from Rice Husk Lignin by Ultrasound Assisted - Sulfonation. Key Engineering Materials 775: 20-25. DOI: 10.4028/
Market and Market (MNM). 2020. Bioplastics & Biopolymers Market by Type (Non-Biodegradable/Bio-Based, Biodegradable), End-Use Industry (Packaging, Consumer Goods, Automotive & Transportation, Textiles, Agriculture & Horticulture), Region - Global Forecast to 2025. <>
Mensah-Darkwa, K., Zequine, C., Kahol, P.K., and Gupta, R.K. (2019). Supercapacitor energy storage device using biowastes: A sustainable approach to green energy. Sustainability (Switzerland), 11(2). DOI: 10.3390/su11020414
Minet, J., Cayla, A., and Campagne, C. 2019. Lignin as Sustainable Antimicrobial Fillers to Develop PET Multifilaments by Melting Process. In Bio-based Polymers: IntechOpen.
Moreno, A., and Sipponen, M.H. 2020. Lignin-based smart materials: a roadmap to processing and synthesis for current and future applications. Materials Horizons 7(9): 2237-2257. DOI: 10.1039/d0mh00798f
Mushtaq, M., Tan, I.M., and Sagir, M. 2014. New surfactants for EOR applications: Effect of chain length on performance. AIP Conference Proceedings (1621), 742-748. DOI: 10.1063/1.4898550
Nakagawa-Izumi, A., H’ng, Y.Y., Mulyantara, L.T, Maryana, R., Do, V.T., and Ohi, H. 2017. Characterization of syringyl and guaiacyl lignins in thermomechanical pulp from oil palm empty fruit bunch by pyrolysis-gas chromatography-mass spectrometry using ion intensity calibration. Industrial Crops and Products 95: 615-620. DOI: 10.1016/j.indcrop.2016.11.030
Norgren, M., and Edlund, H. 2014. Lignin: Recent advances and emerging applications. Current Opinion in Colloid & Interface Science 19(5): 409-416. DOI: 10.1016/j.cocis.2014.08.004
Nwakaudu, A.A., Nwakaudu, M.S., Owuamanam, C.I., and Iheaturu, N.C. 2015. The Use of Natural Antioxidant Active Polymer Packaging Films for Food Preservation. AppliedSignals Reports, 2(4): 38–50.
Pan, X., Kadla, J.F., Ehara, K., Gilkes, N., and Saddler, J.N. 2006. Organosolv ethanol lignin from hybrid poplar as a radical scavenger: Relationship between lignin structure, extraction conditions, and antioxidant activity. Journal of Agricultural and Food Chemistry 54(16), 5806–5813. DOI: 10.1021/jf0605392
Peng, R., Pang, Y., Qiu, X., Qian, Y., and Zhou, M. 2020. Synthesis of anti-photolysis lignin-based dispersant and its application in pesticide suspension concentrate. RSC Advances 10(23): 13830-13837. DOI: 10.1039/c9ra10626j
Poonam, S.K., Arora, A., and Tripathi, S.K. 2019. Review of supercapacitors: Materials and devices. Journal of Energy Storage 801–825. DOI: 10.1016/j.est.2019.01.010
Qing, A.I., Fang, G.Z. Zhao, Y.F., Wang, C.H., and Ren, S.X. 2009. Synthesis and Characterization of Diethanolamine-based Lignin Nonionic Surfactant. Chemistry and Industry of Forest Products 29(6): 52-56.
Rempe, C.S., Burris, K.P., Lenaghan, S.C., and Stewart, C.N. 2017. The potential of systems biology to discover antibacterial mechanisms of plant phenolics. Frontiers in Microbiology, 8: 422. DOI: 10.3389/fmicb.2017.00422
Riaz, S., and Ashraf, M. 2020. Recent Advances in Development of Antimicrobial Textiles. In M. Shahid & R. Adivarekar (Eds.), Advances in Functional Finishing of Textiles (pp. 129-168). Singapore: Springer.
Rodríguez-Correa, C., Stollovsky, M., Hehr, T., Rauscher, Y., Rolli, B., and Kruse, A. 2017. Influence of the Carbonization Process on Activated Carbon Properties from Lignin and Lignin-Rich Biomasses. ACS Sustainable Chemistry and Engineering 5(9), 8222–8233. DOI: 10.1021/acssuschemeng.7b01895
Saha, D., Mirando, N., and Levchenko, A. 2018. Liquid and vapor phase adsorption of BTX in lignin derived activated carbon: Equilibrium and kinetics study. Journal of Cleaner Production 182, 372–378. DOI: 10.1016/j.jclepro.2018.02.076
Sinisi, V., Pelagatti, P., Carcelli, M., Migliori, A., Mantovani, L., Righi, L., Leonardi, G., Pietarinen, S., Hubsch, C., and Rogolino, D. 2018. A Green Approach to Copper-Containing Pesticides: Antimicrobial and Antifungal Activity of Brochantite Supported on Lignin for the Development of Biobased Plant Protection Products. ACS Sustainable Chemistry & Engineering 7(3): 3213-3221. DOI: 10.1021/acssuschemeng.8b05135
Spiridon, I., Leluk, K., Resmerita, A.M., and Darie, R.N. 2015. Evaluation of PLA-lignin bioplastics properties before and after accelerated weathering. Composites Part B: Engineering 69, 342–349. DOI: 10.1016/j.compositesb.2014.10.006
Sriroth, K., and Sunthornvarabhas, J. 2018. Lignin from Sugar Process as Natural Antimicrobial Agent. Biochemistry & Pharmacology: Open Access 07(01). DOI: 10.4172/2167-0501.1000239
Sunthornvarabhas, J., Liengprayoon, S., Lerksamran, T., Buratcharin, C., Suwonsichon, T.I, Vanichsriratana, W., and Sriroth, K. 2018. Utilization of Lignin Extracts from Sugarcane Bagasse as Bio-based Antimicrobial Fabrics. Sugar Tech 21(2): 355-363. DOI: 10.1007/s12355-018-0683-2
Sunthornvarabhas, J., Liengprayoon, S., and Suwonsichon, T. 2017. Antimicrobial kinetic activities of lignin from sugarcane bagasse for textile product. Industrial Crops and Products 109: 857-861. DOI: 10.1016/j.indcrop.2017.09.059
Thakur, V.K., Thakur, M.K, Raghavan, P., and Kessler, M.R. 2014. Progress in Green Polymer Composites from Lignin for Multifunctional Applications: A Review. ACS Sustainable Chemistry & Engineering 2(5): 1072-1092. DOI: 10.1021/sc500087z
Tian, J., Ren, S., Fang, G., Ma, Y., and Ai, Q. 2014. Preparation and Performance of Dimethyl-Acetoxy(2-Carboxymethyl Ether)-Lignin Ammonium Chloride Amphoteric Surfactant. BioResources 9(4): 6290-6303.
Uraki, Y., Ishikawa, N., Nishida, M., and Sano, Y. 2001. Preparation of amphipilic lignin derivative as cellulose stabilizer. J Wood Sci 47: 301–307. DOI: 10.1007/BF00766717
Vinardell, M.P., Ugartondo, V., and Mitjans, M. 2008. Potential applications of antioxidant lignins from different sources. Industrial Crops and Products 27(2), 220–223. DOI: 10.1016/j.indcrop.2007.07.011
Vostrejs, P., Adamcová, D., Vaverková, M. D., Enev, V., Kalina, M., Machovsky, M., Šourková, M., Marova, I., and Kovalcik, A. 2020. Active biodegradable packaging films modified with grape seeds lignin. RSC Advances 10(49): 29202–29213. DOI: 10.1039/d0ra04074f
Winowiski, T. S., and Zajakowski, V. L. 2000. US Patent No. US6113974A.
Wood, L. 2019. Global Agricultural Surfactants Market 2019-2024: $1.85 Billion Opportunity in Production of Sustainable Bio-Based Surfactant Products. Research and Markets.
Xu, C., and Ferdosian, F. 2017. Utilization of Lignosulfonate as Dispersants or Surfactants. In Conversion of Lignin into Bio-Based Chemicals and Materials (pp. 81-90). Springer: Germany.
Xu, J., Zhang, Y., Chen, H., Wang, P., Xie, Z., Yao, Y., Yan, Y., and Zhang, J. 2013. Effect of surfactant headgroups on the oil/water interface: An interfacial tension measurement and simulation study. Journal of Molecular Structure 1052: 50-56. DOI: 10.1016/j.molstruc.2013.07.049
Yamashita, Y., and Sakamoto, K. 2016. Hydrophilic–Lipophilic Balance (HLB): Classical Indexation and Novel Indexation of Surfactant. In Hiroyuki Ohshima (Ed.), Encyclopedia of Biocolloid and Biointerface Sci. (pp. 570-574). New York: Wiley and Sons.
Yang, W., Fortunati, E., Dominici, F., Giovanale, G., Mazzaglia, A., Balestra, G. M., Kenny, J. M., and Puglia, D. 2016a. Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging. European Polymer Journal 79: 1–12. DOI: 10.1016/j.eurpolymj.2016.04.003
Yang, W., Owczarek, J.S., Fortunati, E., Kozanecki, M., Mazzaglia, A., Balestra, G.M., Kenny, J.M., Torre, L., and Puglia, D. 2016b. Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging. Industrial Crops and Products 94: 800–811. DOI: 10.1016/j.indcrop.2016.09.061
Yang, W., Weng, Y., Puglia, D., Qi, G., Dong, W., Kenny, J. M., and Ma, P. 2020. Poly(lactic acid)/lignin films with enhanced toughness and anti-oxidation performance for active food packaging. International Journal of Biological Macromolecules 144: 102–110. DOI: 10.1016/j.ijbiomac.2019.12.085
Yildirim, S., Röcker, B., Pettersen, M. K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., Radusin, T., Suminska, P., Marcos, B., and Coma, V. 2018. Active Packaging Applications for Food. Comprehensive Reviews in Food Science and Food Safety 17(1): 165–199. DOI: 10.1111/1541-4337.12322
Yu, B., Chang, Z., and Wang, C. 2016. The key pre-pyrolysis in lignin-based activated carbon preparation for high performance supercapacitors. Materials Chemistry and Physics 181: 187–193. DOI: 10.1016/j.matchemphys.2016.06.048
Yoo, C.G., Dumitrache, A., Muchero, W., Natzke, J., Akinosho, H., Li, M., Sykes, R.W., Brown, S.D., Davison, B., Tuskan, G.A., Pu, Y., and Ragauskas, A.J. 2017. Significance of Lignin S/G Ratio in Biomass Recalcitrance of Populus trichocarpa Variants for Bioethanol Production. ACS Sustainable Chemistry & Engineering 6(2): 2162-2168. DOI: 10.1021/acssuschemeng.7b03586
Zadeh, E.M., O’Keefe, S.F., and Kim, Y.T. 2018. Utilization of Lignin in Biopolymeric Packaging Films [Research-article]. ACS Omega 3(7): 7388–7398. DOI: 10.1021/acsomega.7b01341
Zadeh, M.E., O’Keefe, S.F., and Kim, Y.T. 2019. Lignin-Based Biopolymeric Active Packaging System for Oil Products. Journal of Food Science 84(6): 1420–1426. DOI: 10.1111/1750-3841.14632
Zeng, L., Lou, X., Zhang, J., Wu, C., Liu, J., and Jia, C. 2019. Carbonaceous mudstone and lignin-derived activated carbon and its application for supercapacitor electrode. Surface and Coatings Technology 357(August 2018), 580–586. DOI: 10.1016/j.surfcoat.2018.10.041
Zhang, H., Bai, Y., Zhou, W., and Chen, F. 2017a. Color reduction of sulfonated eucalyptus kraft lignin. Int J Biol Macromol 97: 201-208. DOI: 10.1016/j.ijbiomac.2017.01.031
Zhang, Ji., Ge, Y., Qin, L., Huang, W., and Li, Z. 2017b. Synthesis of a lignin-based surfactant through amination, sulfonation, and acylation. Journal of Dispersion Science and Technology 39(8): 1140-1143. DOI: 10.1080/01932691.2017.1385478
Zhang, Z., Harrison, M.D., Rackemann, D.W., Doherty, W.O.S., and O’Hara, I.M. 2016. Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chemistry 18(2): 360-381. DOI: 10.1039/c5gc02034d
Zhao, X., Cheng, K., and Liu, D. 2009. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82(5): 815-827. DOI: 10.1007/s00253-009-1883-1
Zhou, M., Wang, W. Yang, D., and Qiu, X. 2015. Preparation of a new lignin-based anionic/cationic surfactant and its solution behaviour. RSC Advances 5(4): 2441-2448. DOI: 10.1039/c4ra10524a
Zhu, Y., Li, Z., and Chen, J. 2019. Applications of lignin-derived catalysts for green synthesis. Green Energy & Environment 4(3): 210-244. DOI: 10.1016/j.gee.2019.01.003




How to Cite

Solihat, N. N., Sari, F. P., Falah, F., Ismayati, M., Lubis, M. A. R., Fatriasari, W., Santoso, E. B., & Syafii, W. (2021). Lignin as an Active Biomaterial: A Review. Jurnal Sylva Lestari, 9(1), 1–22.





 Abstract views: 386 times
 PDF downloaded: 110 times